832 Chapter 10 / Control Systems Design in State SpacewhereThe rank of the observability matrix N,is 2. Hence, the system is completely observable. Transform the system equations into the ob-
servable canonical form.Solution.Sincewe haveDefinewhereThenandDefineThen the state equation becomesor(10–157)
The output equation becomesy=CQxˆ
= B
0
1
- 1
- 2
RB
xˆ 1
xˆ 2
R + B
0
2
Ru
B
xˆ
1xˆ
2R = B
- 1
1
0
1
RB
1
- 4
1
- 3
RB
- 1
1
0
1
RB
xˆ 1
xˆ 2
R + B
- 1
1
0
1
RB
0
2
Ru
xˆ
=Q-^1 AQxˆ +Q-^1 Bu
x=Qxˆ
Q-^1 = B
- 1
1
0
1
R
Q= bB
2
1
1
0
RB
1
- 3
1
- 2
Rr
- 1
= B
- 1
1
0
1
R
- 1
= B
- 1
1
0
1
R
N= B
1
1
- 3
- 2
R, W= B
a 1
11
0
R = B
2
1
1
0
R
Q=(WN*)-^1
a 1 =2, a 2 = 1
∑s I-A∑=s^2 +2s+ 1 =s^2 +a 1 s+a 2N= CCA C*D= B
1
1
- 3
- 2
R
A=B
1
- 4
1
- 3
R, B= B
0
2
R, C=[ 1 1 ]
Openmirrors.com