IV. The logistic model for matched data(pages
397–400)
A. Advantage: Provides an efficient analysis when
there are variables other than matching
variables to control.
B. Model uses dummy variables in identifying
different strata.
C. Model form:
logit PðXÞ¼aþbEþ~g 1 iV 1 iþ~g 2 jV 2 j
þE~dkWk;
whereV 1 iare dummy variables identifying
matched strata,V 2 jare potential confounders
based on variables not involved in the matching,
andWkare effect modifiers (usually) based on
variables not involved in the matching.
D. Odds ratio expression ifEis coded as (0, 1):
ROR¼expbþ~dkWk
:
V. An application(pages 400–403)
A. Case-control study, 2-to-1 matching,D¼MI
(0, 1),E¼SMK (0, 1),
four matching variables: AGE, RACE, SEX,
HOSPITAL,
two variables not matched: SBP, ECG,
n¼117 (39 matchedsets,3 observations per set).
B. Model form:
logit PðXÞ¼aþbSMKþ~
38
i¼ 1
g 1 iV 1 iþg 21 SBP
þg 22 ECGþSMKðd 1 SBPþd 2 ECGÞ:
C. Odds ratio:
ROR¼expðbþd 1 SBPþd 2 ECGÞ:
D. Analysis: Use conditional ML estimation;
interaction not significant
No interaction model:
logit PðXÞ¼aþbSMKþ~
38
i¼ 1
g 1 iV 1 iþg 21 SBP
þg 22 ECG:
Odds ratio formula:
ROR¼expðbÞ;
416 11. Analysis of Matched Data Using Logistic Regression