Fig. 10.14(Courtesy of M.S. Fuller; from Cho & Fuller
1989.) Cho, C.W. & Fuller, M.F. (1989) Ultrastructural
organization of freeze-substituted zoospores of Phyto-
phthora palmivora. Canadian Journal of Botany 67 , 1493 –
1499.
Fig. 10.16(Photographs courtesy of F. Gubler & A.
Hardham; (a) from Hardham 1995; (b–d) from Gubler &
Hardham 1988.) Hardham, A.R. (1995) Polarity of vesicle
distribution in oomycete zoospores: development of
polarity and importance for infection. Canadian Journal
of Botany 73 (suppl.) S400 – 407. Gubler, F. & Hardham,
A.R. (1988) Secretion of adhesive material during
encystment of Phytophthora cinnamomizoospores, char-
acterized by immunogold labeling with monoclonal
antibodies to components of peripheral vesicles. Journal
of Cell Science 90 , 225 –235.
Fig. 10.17(From Deacon & Mitchell 1985.) Deacon, J.W.
& Mitchell, R.T. (1985) Toxicity of oat roots, oat root
extracts, and saponins to zoospores of Pythiumspp. and
other fungi. Transactions of the British Mycological Society
84 , 479–487.
Fig 10.21(All data from Warburton & Deacon 1998.)
Warburton, A.J. & Deacon, J.W. (1998) Transmembrane
Ca^2 +fluxes associated with zoospore encystment and cyst
germination by the phytopathogen Phytophthora parasitica.
Fungal Genetics and Biology 25 , 54 – 62.
Fig. 10.25(From Lacey 1988; based on the work of P.H.
Gregory and J.L. Monteith.) Lacey, J. (1988) Aerial dis-
persal and the development of microbial communities.
In:Micro-organisms in Action: concepts and applications
in microbial ecology(Lynch, J.M. & Hobbie, J.E., eds),
pp. 207–237. Blackwell Scientific, Oxford.
Fig. 10.27(From Carter 1965.) Carter, M.V. (1965) Asco-
spore deposition of Eutypa armeniacae. Australian Journal
of Agricultural Research 16 , 825 – 836.
Chapter 11
Fig. 11.11(Based on Chang & Hudson 1967) Chang, Y.
& Hudson, H.J. (1967) The fungi of wheat straw com-
post: paper I. Transactions of the British Mycological Society
50 , 649– 666.
Fig. 11.14(From Krauss & Deacon 1994.) Krauss, U. &
Deacon, J.W. (1994) Root turnover of groundnut
(Arachis hypogeaL.) in soil tubes. Plant & Soil 166 ,
259–270.
Fig. 11.15(From Krauss & Deacon 1994.) Krauss, U. &
Deacon, J.W. (1994) Root turnover of groundnut
(Arachis hypogeaL.) in soil tubes. Plant & Soil 166 ,
259–270.
Fig. 11.16(From Lascaris & Deacon 1991.) Lascaris, D. &
Deacon, J.W. (1991) Comparison of methods to assess
senescence of the cortex of wheat and tomato roots.
Soil Biology and Biochemistry 23 , 979–986.
Fig. 11.17(Based on Waid (1957) but with additional
information and interpretation.) Waid, J.S. (1957)
Distribution of fungi within the decomposing tissues
of ryegrass roots. Transactions of the British Mycological
Society 40 , 391– 406.
Chapter 12
Fig. 12.3(Reproduced from Raaijmakers & Weller 1998.)
Raaijmakers, J.M. & Weller, D.M. (1998) Natural
plant protection by 2,4-diacetylphloroglucinol-producing
Pseudomonasspp. in take-all decline soils. Molecular
Plant–Microbe Interactions 11 , 144 –152.
Fig. 12.4(From Wood et al. 1997.) Wood, D.W., Gong, F.,
Daykin, M.M., Williams, P. & Pierson, L.S. (1997)
N-acyl-homoserine lactone-mediated regulation of gene
expression by Pseudomonas aureofaciens30 – 84 in the
wheat rhizosphere. Journal of Bacteriology 179 , 7663–
7670.
Fig. 12.5((a) Courtesy of Samuels, G.J, Chaverri, P.,
Farr, D.F. & McCray, E.B. Trichoderma Online,
Systematic Botany and Mycology Laboratory, ARS,
USDA; from http://nt.ars-grin.gov/taxadescriptions/keys/
TrichodermaIndex.cfm)
Fig. 12.10(Courtesy of P. Jeffries; from Jeffries & Young
1976.) Jeffries, P. & Young, T.W.K. (1976) Ultrastructure
of infection of Cokeromyces recurvatusby Piptocephalis unis-
pora(Mucorales). Archives of Microbiology 109 , 277–288.
Fig. 12.11(From van den Boogert & Deacon 1994.) van
den Boogert, P.H.J.F & Deacon, J.W. (1994) Biotrophic
mycoparasitism by Verticillium biguttatum onRhizoctonia
solani. European Journal of Plant Pathology 100 , 137–156.
Fig. 12.19(Data from Deacon 1985.) Deacon, J.W. (1985)
Decomposition of filter paper cellulose by thermophilic
fungi acting singly, in combination, and in sequence.
Transactions of the British Mycological Society 85 , 663 –
669.
Chapter 13
Fig. 13.4(From van der Heijden et al. 1998, with permis-
sion from the publisher.) van der Heijden, M.G.A.,
Wiemken, A. & Sanders, I.R. (1998) Mycorrhizal fungal
diversity determines plant diversity, ecosystem variabil-
ity and productivity. Nature 396 , 69–72.
Fig. 13.5(Data from van der Heijden et al. 1998, with per-
mission from the publisher, but only some of the plant
species are shown in this figure.) van der Heijden,
M.G.A., Wiemken, A. & Sanders, I.R. (1998) Mycorrhizal
fungal diversity determines plant diversity, ecosystem vari-
ability and productivity. Nature 396 , 69–72.
Fig. 13.25(Image courtesy of A. Scheussler & M. Kluge;
from Schuessler & Kluge 2001.) Scheussler, A. & Kluge,
M. (2001) Geosiphon pyriforme, an endocytosymbiosis
between fungus and cyanobacteria, and its meaning as
a model system for AM research. In: The Mycota, vol. IX.
Fungal Associations (Hoch, B., ed.), pp. 151–161.
Springer-Verlag, Berlin.
Fig. 13.26(Courtesy of M.P. Coutts, J.E. Dolezal and the
University of Tasmania; see Madden & Coutts 1979.)
Madden, J.L. & Coutts, M.P. (1979) The role of fungi in
the biology and ecology of woodwasps (Hymenoptera
Siricidae). In: Insect–Fungus Symbiosis(Batra, L.R., ed.),
p. 165. Allanheld, Osmun & Co., New Jersey.
SOURCES 359
FB4eD01 04/12/2005 09:40 AM Page 359