266 4 Thermodynamics and Statistical Physics
From the law of equipartition of energy we havedEt
dT=
3
2
k;dE
′dT=
β
2k (2)Hence,K
η=
[
5
2
.
3
2
+
β
2]
k
m(3)
We can express the result in terms ofCνandγ. From the law of equiparti-
tion of energyCν=(3+β)
2.
k
m; Cp=(5+β)
2.
k
mwhenceγ=Cp
Cν= 1 +
2
3 +βorβ=5 − 3 γ
γ− 1(4)
FurthermoreCν=k
m(γ−1)(5)
Combining (3), (4) and (5)
K
ηCν=
1
4
(9γ−5)4.3.2 Maxwell’s Thermodynamic Relations ..............
4.21Letf(x,y)=0(1)
df=(
∂f
∂x)
ydx+(
∂f
∂y)
xdy=0(2)Equation of state can be written asf(P,V,T)=0. By first law of thermody-
namics
dQ=dU+dW (3)
By second law of thermodynamics
dQ=Tds (4)
for infinitesimal reversible process
dW=pdV (5)