4.3 Solutions 267
Therefore,dU=Tds−PdV (6)whereUis the internal energy,Qthe heat absorbed,Wthe work done by the
system,Sthe entropy,Pthe pressure andTthe Kelvin temperature.
Let the independent variables be calledxandy. ThenU=U(x,y);V=V(x,y);S=S(x,y)(7)Now,df=(
∂f
∂x)
ydx+(
∂f
∂y)
xdy (8)ThereforedU=(
∂U
∂x)
ydx+(
∂U
∂y)
xdy (9)dV=(
∂V
∂x)
ydx+(
∂V
∂y)
xdy (10)dS=(
∂S
∂x)
ydx+(
∂S
∂y)
xdy (11)Eliminating internal energyUand substituting (9), (10) and (11) in (6)(
∂U
∂x)
ydx+(
∂U
∂y)
xdy=T[(
∂S
∂x)
ydx+(
∂S
∂y)
xdy]
−P
[(
∂V
∂x)
ydx+(
∂V
∂y)
xdy]
(12)
Equating the coefficients of dxand dy(
∂U
∂x)
y=T
(
∂S
∂x)
y−P
(
∂V
∂x)
y(13)
(
∂U
∂y)
x=T
(
∂S
∂y)
x−P
(
∂V
∂y)
x(14)
Differentiating (13) with respect toywithxfixed, and differentiating (14)
with respect toxwithyfixed