4.3 Solutions 267
Therefore,
dU=Tds−PdV (6)
whereUis the internal energy,Qthe heat absorbed,Wthe work done by the
system,Sthe entropy,Pthe pressure andTthe Kelvin temperature.
Let the independent variables be calledxandy. Then
U=U(x,y);V=V(x,y);S=S(x,y)(7)
Now,
df=
(
∂f
∂x
)
y
dx+
(
∂f
∂y
)
x
dy (8)
Therefore
dU=
(
∂U
∂x
)
y
dx+
(
∂U
∂y
)
x
dy (9)
dV=
(
∂V
∂x
)
y
dx+
(
∂V
∂y
)
x
dy (10)
dS=
(
∂S
∂x
)
y
dx+
(
∂S
∂y
)
x
dy (11)
Eliminating internal energyUand substituting (9), (10) and (11) in (6)
(
∂U
∂x
)
y
dx+
(
∂U
∂y
)
x
dy=T
[(
∂S
∂x
)
y
dx+
(
∂S
∂y
)
x
dy
]
−P
[(
∂V
∂x
)
y
dx+
(
∂V
∂y
)
x
dy
]
(12)
Equating the coefficients of dxand dy
(
∂U
∂x
)
y
=T
(
∂S
∂x
)
y
−P
(
∂V
∂x
)
y
(13)
(
∂U
∂y
)
x
=T
(
∂S
∂y
)
x
−P
(
∂V
∂y
)
x
(14)
Differentiating (13) with respect toywithxfixed, and differentiating (14)
with respect toxwithyfixed