268 4 Thermodynamics and Statistical Physics
{
∂
∂y
(
∂U
∂x
)
y
}
x
=
(
∂T
∂y
)
x
(
∂S
∂x
)
y
+T
{
∂
∂y
(
∂S
∂x
)
y
}
x
(15)
−
(
∂P
∂y
)
x
(
∂V
∂x
)
y
−P
{
∂
∂y
(
∂V
∂x
)
y
}
{ x
∂
∂x
(
∂U
∂y
)
x
}
y
=
(
∂T
∂x
)
y
(
∂S
∂y
)
x
+T
{
∂
∂x
(
∂S
∂y
)
x
}
y
(16)
−
(
∂P
∂x
)
y
(
∂V
∂y
)
x
−P
{
∂
∂x
(
∂V
∂y
)
x
}
y
Since the order of differentiation is immaterial, dUbeing a perfect differ-
ential, the left hand sides of (15) and (16) are equal. Further, since dSand dV
are perfect differentials.
{
∂
∂y
(
∂S
∂x
)
y
}
x
=
{
∂
∂x
(
∂S
∂y
)
x
}
y
(17)
and
{
∂
∂y
(
∂V
∂x
)
y
}
x
=
{
∂
∂x
(
∂V
∂y
)
x
}
y
(18)
Using (15), (16), (17), and (18),
(
∂P
∂x
)
y
(
∂V
∂y
)
x
−
(
∂P
∂y
)
x
(
∂V
∂x
)
y
=
(
∂T
∂x
)
y
(
∂S
∂y
)
x
−
(
∂T
∂y
)
x
(
∂S
∂x
)
y
(19)
Equation (19) can be written in the form of determinants
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
(
∂P
∂x
)
y
(
∂P
∂y
)
( x
∂V
∂x
)
y
(
∂V
∂y
)
x
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
(
∂T
∂x
)
y
(
∂T
∂y
)
( x
∂S
∂x
)
y
(
∂S
∂y
)
x
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
(20)
(a) Let the temperature and volume be independent variables. Putx=Tand
y=Vin (20). Then
(
∂T
∂x
)
y
=
(
∂V
∂y
)
x
=1;
(
∂T
∂y
)
x
=
(
∂V
∂x
)
y
= 0
SinceTandVare independent, we find
(
∂S
∂V
)
T
=
(
∂P
∂T
)
V