1000 Solved Problems in Modern Physics

(Grace) #1

268 4 Thermodynamics and Statistical Physics


{

∂y

(

∂U

∂x

)

y

}

x

=

(

∂T

∂y

)

x

(

∂S

∂x

)

y

+T

{


∂y

(

∂S

∂x

)

y

}

x

(15)


(

∂P

∂y

)

x

(

∂V

∂x

)

y

−P

{


∂y

(

∂V

∂x

)

y

}

{ x

∂x

(

∂U

∂y

)

x

}

y

=

(

∂T

∂x

)

y

(

∂S

∂y

)

x

+T

{


∂x

(

∂S

∂y

)

x

}

y

(16)


(

∂P

∂x

)

y

(

∂V

∂y

)

x

−P

{


∂x

(

∂V

∂y

)

x

}

y
Since the order of differentiation is immaterial, dUbeing a perfect differ-
ential, the left hand sides of (15) and (16) are equal. Further, since dSand dV
are perfect differentials.
{

∂y

(

∂S

∂x

)

y

}

x

=

{


∂x

(

∂S

∂y

)

x

}

y

(17)

and
{

∂y

(

∂V

∂x

)

y

}

x

=

{


∂x

(

∂V

∂y

)

x

}

y

(18)

Using (15), (16), (17), and (18),
(
∂P
∂x

)

y

(

∂V

∂y

)

x


(

∂P

∂y

)

x

(

∂V

∂x

)

y

=

(

∂T

∂x

)

y

(

∂S

∂y

)

x


(

∂T

∂y

)

x

(

∂S

∂x

)

y
(19)
Equation (19) can be written in the form of determinants
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

(

∂P

∂x

)

y

(

∂P

∂y

)

( x
∂V
∂x

)

y

(

∂V

∂y

)

x

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

(

∂T

∂x

)

y

(

∂T

∂y

)

( x
∂S
∂x

)

y

(

∂S

∂y

)

x

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

(20)

(a) Let the temperature and volume be independent variables. Putx=Tand
y=Vin (20). Then
(
∂T
∂x

)

y

=

(

∂V

∂y

)

x

=1;

(

∂T

∂y

)

x

=

(

∂V

∂x

)

y

= 0

SinceTandVare independent, we find
(
∂S
∂V

)

T

=

(

∂P

∂T

)

V

(21)
Free download pdf