1000 Solved Problems in Modern Physics

(Grace) #1

4.3 Solutions 271


u=

T

3

∂u
∂T


u
3

or

du
u

+ 4

dT
T

= 0

Integrating,
lnu=4lnT+lna=lnaT^4
where lnais the constant of integration. Thus,
u=aT^4

4.27 S=f(T,V)
whereTandVare independent variables.


dS=

(

∂S

∂T

)

V

dT+

(

∂S

∂V

)

T

dV
(
∂S
∂T

)

p

=

(

∂S

∂T

)

V

+

(

∂S

∂V

)

T

(

∂V

∂T

)

P
Multiplying out byTand re-arranging

T

(

∂S

∂T

)

p

−T

(

∂S

∂T

)

V

=T

(

∂S

∂V

)

T

(

∂V

∂T

)

P
Now,

T

(

∂S

∂T

)

p

=Cp; T

(

∂S

∂T

)

ν

=Cν

and from Maxwell’s relation,
(
∂S
∂V

)

T

=

(

∂P

∂T

)

ν
Therefore,

Cp−Cν=T

(

∂P

∂T

)

V

(

∂V

∂T

)

P

(1)

For one mole of a perfect gas,PV=RT. Therefore
(
∂P
∂T

)

V

=

R

V

and

(

∂V

∂T

)

P

=

R

P

It follows that
Cp−Cν=RT

4.28

(

P+

a
V^2

)

(V−b)=RT (1)

Neglectingbin comparison withV,

P=

RT

V


a
V^2

(2)
Free download pdf