4.3 Solutions 271
u=
T
3
∂u
∂T
−
u
3
or
du
u
+ 4
dT
T
= 0
Integrating,
lnu=4lnT+lna=lnaT^4
where lnais the constant of integration. Thus,
u=aT^4
4.27 S=f(T,V)
whereTandVare independent variables.
dS=
(
∂S
∂T
)
V
dT+
(
∂S
∂V
)
T
dV
(
∂S
∂T
)
p
=
(
∂S
∂T
)
V
+
(
∂S
∂V
)
T
(
∂V
∂T
)
P
Multiplying out byTand re-arranging
T
(
∂S
∂T
)
p
−T
(
∂S
∂T
)
V
=T
(
∂S
∂V
)
T
(
∂V
∂T
)
P
Now,
T
(
∂S
∂T
)
p
=Cp; T
(
∂S
∂T
)
ν
=Cν
and from Maxwell’s relation,
(
∂S
∂V
)
T
=
(
∂P
∂T
)
ν
Therefore,
Cp−Cν=T
(
∂P
∂T
)
V
(
∂V
∂T
)
P
(1)
For one mole of a perfect gas,PV=RT. Therefore
(
∂P
∂T
)
V
=
R
V
and
(
∂V
∂T
)
P
=
R
P
It follows that
Cp−Cν=RT
4.28
(
P+
a
V^2
)
(V−b)=RT (1)
Neglectingbin comparison withV,
P=
RT
V
−
a
V^2