1000 Solved Problems in Modern Physics

(Grace) #1

272 4 Thermodynamics and Statistical Physics


(
∂P
∂T

)

V

=

R

V

(3)

Re-writing (1)

PV+

a
V

=RT

DifferentiatingVwith respect toT, keepingPfixed

P

(

∂V

∂T

)

P


a
V^2

(

∂V

∂T

)

P

=R

or
(
∂V
∂T

)

P

=

R

P−a/V^2

(4)

Now,

Cp−Cν=T

(

∂P

∂T

)

V

(

∂V

∂T

)

P

(5)

(By Problem 4.27)
Using (3) and (4) in (5)

Cp−Cν=

R^2 T

V(P−a/V^2 )

=R

(P+a/V^2 )
(P−a/V^2 )

≈R(1+ 2 a/PV^2 )

=R

(

1 +

2 a
RT V

)

4.29 Iff(x,y,z)=0, then it can be shown that
(
∂x
∂y


)

z

(

∂y
∂z

)

x

(

∂z
∂x

)

y

=−1(1)

Thus, iff(P,V,T)= 0
(
∂P
∂V

)

T

(

∂V

∂T

)

P

(

∂T

∂P

)

V

=−1(1)

or

(

∂P

∂T

)

V

=−

(

∂P

∂V

)

T

(

∂V

∂T

)

P

(2)

and

(

∂V

∂T

)

P

=−

(

∂P

∂T

)

V

(

∂V

∂P

)

T

(3)

But

CP−CV=T

(

∂P

∂T

)

V

(

∂V

∂T

)

P

(4)
Free download pdf