4.3 Solutions 281
4.49 p(EJ)=(2j+1)e
−J(J+1)^2
2 I 0 kT
The factor
^2
2 I 0 k
=
(1. 055 × 10 −^34 )^2
2 × 4. 64 × 10 −^48 × 1. 38 × 10 −^23 J
= 86. 9
p(E 0 )= 1
p(E 1 )= 3 e−^2 ×^86.^9 /^400 = 1. 942
p(E 2 )= 5 e−^6 ×^86.^9 /^400 = 1. 358
p(E 3 )= 7 e−^12 ×^86.^9 /^400 = 0. 516
4.50 p(E 2 )= 5 e−^6 ×^86.^9 /T= 5 e−^521.^4 /T (1)
p(E 3 )= 7 e−^12 ×^86.^9 /T= 7 e−^1042.^8 /T
Equatingp(E 2 ) andp(E 3 ) and solving forT, we findT= 1 ,549 K
4.51 For Boltzmann statisticsp(E)∝e−E/kTTherefore,
p(En)
p(E 1 )
=e−(En−E^1 )/kT
In hydrogen atom, if the ground state energyE 1 = 0 ,thenE 2 = 10. 2 ,
E 3 = 12 .09 andE 4 = 12 .75 eV
The factorkT= 8. 625 × 10 −^5 × 6 , 000 = 0. 5175
P(E 2 )/P(E 1 )=e−^10.^2 /^0.^5175 = 2. 75 × 10 −^9
P(E 3 )/P(E 1 )=e−^12.^09 /^0.^5175 = 1. 4 × 10 −^10
P(E 4 )/P(E 1 )=e−^12.^75 /^0.^5175 = 1. 99 × 10 −^11
ThusP(E 1 ):P(E 2 ):P(E 3 )::1:2. 8 × 10 −^9 :1. 4 × 10 −^10 :2. 0 × 10 −^11
This then means that the hydrogen atoms in the chromospheres are predomi-
nantly in the ground state.
4.52 p(E)=
1
e(E−EF)/kT+ 1
ForE−EF=kT,p(E)=
1
e+ 1
= 0. 269
ForE−EF= 5 kT,p(E)=
1
e^5 + 1
= 6. 69 × 10 −^3
ForE−EF= 10 kT,p(E)=
1
e^10 + 1
= 4. 54 × 10 −^5
4.53 For the conduction electrons, the number of states per unit volume with energy
in the rangeEandE+dE, can be written asn(E)dEwheren(E) is the density
of states. Now, for a free electron gas
n(E)=
8
√
2 πm^3 /^2
h^3