5.3 Solutions 309
N=n(E)ΔEa^3
= 1. 356 × 1028 × 0. 01 ×(10−^2 )^3
= 1. 356 × 1020
5.34 EF=
h^2
8 m
(
3 n
π
) 2 / 3
=
(6. 63 × 10 −^34 )^2
(8)(9. 11 × 10 −^31 )
(
3 × 5. 86 × 1028
π
) 2 / 3
= 8. 827 × 10 −^19 J= 5 .517 eV
5.35 P(E)=
1
eΔE/kT+ 1
= 0. 9
SubstitutingkT= 5. 52 × 10 −^5 × 800 = 0 .04416 eV
Solving forΔE, we getΔE=E−EF=− 2. 2 × 0. 04416 =− 0. 097
Therefore,E= 5. 52 − 0. 10 = 5 .42 eV
5.3.4 Semiconductors...................................
5.36λ=
1241
1. 55
=800 nm
5.37 The number of electrons and holes per unit volume are given by
ne= 2
(
2 πm
kT
h^2
) 3 / 2
e(EF−Eg)/kT (1)
andnh= 2
(
2 πm
kT
h^2
) 3 / 2
e−EF/kT (2)
Multiplying (1) and (2), one can write
nenh= 4
(
mc^2 k
2 π^2 c^2
) 3
T^3 e−Eg/kT (3)
= 2. 34 × 1031 T^3 e−Eg/kTcm−^6
where we have substituted the values of the constants.
5.38 p=k (1)
E=p^2 / 2 m=k^2 ^2 / 2 m (2)
1
m∗
=
1
^2
d^2 E
dk^2
(3)
Using (2) in Eq. (3)
1
m∗
=
1
^2
d^2
dk^2
(
k^2 ^2
2 m
)
=
2 ^2
2 m^2
=
1
m
∴m∗=m