310 5 Solid State Physics
5.39 The number of silicon atoms/m^3
n=
N 0 d
A
=
6. 02 × 1026 × 2 , 420
28
= 0. 52 × 1029
Let x be the fraction of impurity atom (donor). The general expression for the
conductivity is
σ=nneμn+npeμp
wherennandnpare the densities of the negative and positive charge carriers.
Becausennnp,
σ∼=nneμn=xnpeμn
x=
σ
npeμn
=
1. 08
0. 52 × 1029 × 1. 6 × 10 −^19 × 0. 13
=
9. 985
1010
or 1 part in 10^9.
Note that in normal silicon the conductivity is of the order of 10−^4 (Ω−m)−^1.
A small fraction of doping (10−^9 ) has dramatically increased the value by four
orders of magnitude.
5.40 ne=(4.^83 ×^1021 )T^3 /^2 e−Eg/^2 kTe/m^3
nGe
nSi
=e(ESi−EGe)/^2 kT
kT=
1. 38 × 10 −^23 × 400
1. 6 × 10 −^19
= 0 .0345 eV
nGe
nSi
=e(1.^14 −^0 .7)/(2×^0 .0345)= 588
5.41 kT=
1. 38 × 10 −^23 × 300
1. 6 × 10 −^19
= 0 .0259 eV
nC
nGe
=e−(EGe−EC)/^2 KT=e−(5.^33 −07)/^0.^052 =e−^89 ≈ 2. 2 × 10 −^39
5.42 I=I 0 [exp(eV/kT)−1]
whereI 0 is the forward bias saturation current.
I= 8 × 10 −^11
[
exp
(
0. 5 × 1. 6 × 10 −^19
1. 38 × 10 −^23 × 300
)
− 1
]
= 19. 7 × 10 −^3 A= 19 .7mA
5.43 W=
[
2 0 r
e
(V 0 −Vb)
(
1
Na
+
1
Nd
)] 1 / 2
whereris the relative permittivity,Vbis the bias voltage applied to the junc-
tion (hereVb=0),NaandNdare carrier concentrations in n-type and p-type
respectively.
W=
[
2 × 8. 85 × 10 −^12 × 16 × 0. 8
1. 6 × 10 −^19
(
1
1 × 1023
+
1
2 × 1022
)] 1 / 2
= 0. 29 μm