24 1 Mathematical Physics
1.25 Use the Beta functions to evaluate the definite integral
∫π/ 2
0 (cosθ)
rdθ
1.26 Show that:
(a)Γ(n)Γ(1−n)=sin(πnπ);0<n< 1
(b)|Γ(in)|^2 =nsinπh(nπ)
1.2.4 Matrix Algebra
1.27 Prove that the characteristic roots of a Hermitian matrix are real.
1.28 Find the characteristic equation and the Eigen values of the matrix:
⎛
⎝
1 − 11
03 − 1
00 2
⎞
⎠
1.29 Given below the set of matrices:
A=
(
− 10
0 − 1
)
,B=
(
01
10
)
,C=
(
20
02
)
,D=
(√
3
2
1
2
−^12
√
3
2
)
what is the effect when( A,B,CandDact separately on the position vector
x
y
)
?
1.30 Find the eigen values of the matrix:
⎛
⎝
6 − 22
− 23 − 1
2 − 13
⎞
⎠
1.31 Diagonalize the matrix given in Problem 1.30 and find the trace (Tr=λ 1 +
λ 2 +λ 3 )
1.32 In the Eigen vector equation AX=λX, the operator A is given by
A=
[
32
41
]
Find:
(a) The Eigen valuesλ
(b) The Eigen vectorX
(c) The modal matrixCand it’s inverseC−^1
(d) The productC−^1 AC
1.2.5 MaximaandMinima
1.33 Solve the equationx^3 − 3 x+ 3 =0, by Newton’s method.
1.34 (a) Find the turning points of the functionf(x)=x^2 e−x
2
.
(b) Is the above function odd or even or neither?