1000 Solved Problems in Modern Physics

(Grace) #1

1.2 Problems 25


1.2.6 Series............................................


1.35 Find the interval of convergence for the series:


x−

x^2
22

+

x^3
32


x^4
42

+···

1.36 Expand logxin powers of (x−1) by Taylor’s series.


1.37 Expand cosxinto an infinite power series and determine for what values ofx
it converges.


1.38 Expand sin(a+x)inpowersofxby Taylor’s series.


1.39 Sum the seriess= 1 + 2 x+ 3 x^2 + 4 x^3 +···,|x|< 1


1.2.7 Integration........................................


1.40 (a) Evaluate the integral:

sin^3 xcos^6 xdx


(b) Evaluate the integral:

sin^4 xcos^2 xdx

1.41 Evaluate the integral:

1
2 x^2 − 3 x− 2


dx

1.42 (a) Sketch the curve in polar coordinatesr^2 =a^2 sin 2θ
(b) Find the area within the curve betweenθ=0 andθ=π/2.


1.43 Evaluate:

(x^3 +x^2 +2)
(x^2 +2)^2


dx

1.44 Evaluate the definite integral:
∫+∞


0

4 a^3
x^2 + 4 a^2

dx

1.45 (a) Evaluate:

tan^6 xsec^4 xdx


(b) Evaluate:

tan^5 xsec^3 xdx
Free download pdf