1.3 Solutions 43
Thus the gamma function is an extension of the factorial function to numbers
which are not integers.
1.24 B(m,n)=
∫ 1
0
xm−^1 (1−x)n−^1 dx (1)
With the substitutionx=sin 2Φ(1) becomes
B(m,n)= 2
∫π/ 2
0
(sinΦ)^2 m−^1 (cosΦ)^2 n−^1 dΦ (2)
NowΓ(n)= 2
∫∞
0 y
2 n− (^1) e−y^2 dy
Γ(m)= 2
∫∞
0
y^2 m−^1 e−x
2
dx
∴Γ(m)Γ(n)= 4
∫∞
0
∫∞
0
x^2 m−^1 y^2 n−^1 exp−(x^2 +y^2 )dxdy (3)
The double integral may be evaluated as a surface integral in the first
quadrant of thexy-plane. Introducing the polar coordinatesx=rcosθand
y=rsinθ, the surface element ds=rdrdθ, (3) becomes
Γ(m)Γ(n)= 4
∫π/ 2
0
∫∞
0
r^2 m−^1 (cosθ)^2 m−^1 (sinθ)^2 n−^1 e−r
2
rdrdθ
Γ(m)Γ(n)= 2
∫π/ 2
0
(cosθ)^2 m−^1 (sinθ)^2 n−^1 dθ. 2
∫∞
0
r2(m+n)−^1 e−r
2
dr (4)
In (4), the first integral is identified asB(m,n) and the second one as
Γ(m+n). It follows that
B(m,n)=
Γ(m)Γ(n)
Γ(m+n)
1.25 One form of Beta function is
2
∫π/ 2
0
(cosθ)^2 m−^1 (sinθ)^2 n−^1 dθ=B(m,n)=
Γ(m)Γ(n)
Γ(m+n)
(m> 0 ,n>0)
(1)
Letting 2m− 1 =r, that ism=r+ 21 and 2n− 1 =0, that isn= 1 /2, (1)
becomes
∫π/ 2
0
(cosθ)rdθ=
1
2
Γ
(r+ 1
2
)
Γ
( 1
2
)
Γ
(r
2 +^1