44 1 Mathematical Physics
NowΓ(n)=
∫∞
0 x
n− (^1) e−xdx, putx=y (^2) ,dx= 2 ydy, so that
Γ(n)= 2
∫∞
0
y^2 n−^1 e−y
2
dy
Γ(1/2)= 2
∫∞
0
e−y
2
dy=
2
√
π
2
=
√
π
So that
∫ π 2
0
(cosθ)rdθ=
√
π
2
Γ
(r+ 1
2
)
Γ
(r
2 +^1
)
1.26 (a)B(m,n)=
∫ 1
0
xm−^1 (1−x)n−^1 dx (1)
Putx=
y
1 +y
(2)
B(m,n)=
∫∞
0
yn−^1 dy
(1+y)m+n
=
Γ(m)Γ(n)
Γ(m+n)
Lettingm= 1 −n;0<n< 1
∫∞
0
yn−^1
(1+y)
dy=
Γ(1−n)Γ(n)
Γ(1)
ButΓ(1)=1 and
∫∞
0
yn−^1
(1+y)
dy=
π
sin(nπ)
;0<n< 1
Γ(n)Γ(1−n)=
π
sin(nπ)
(3)
(b)|Γ(in)|^2 =Γ(in)Γ(−in)
NowΓ(n)=Γ(nn+1)
Γ(−in)=
Γ(1−in)
−in
∴|Γ(in)|^2 =
Γ(in)Γ(1−in)
−in(siniπn)
by (3)
Further sinh(πn)=isiniπn
∴|Γ(in)|^2 =
π
nsinh(πn)
1.3.4 Matrix Algebra
1.27 LetHbe the hermitian matrix with characteristic rootsλi. Then there exists a
non-zero vectorXisuch that