1000 Solved Problems in Modern Physics

(Grace) #1

68 1 Mathematical Physics


=

λAλBNA^0
(λB−λA)

[

1

λA

{

1

s


1

s+λA

}


1

λB

{

1

s


1

s+λB

}]

=N 10

[

1

s


λB
(λB−λA)

1

(s+λA)

+

λA
(λB−λA)

1

(s+λB)

]

∴Nc=NA^0

[

1 +

1

λB−λA

(λAexp(−λBt)−λBexp(−λAt))

]

1.74 (a)L{eax}=


∫∞

0

e−sxeaxdx=

∫∞

0

e−(s−a)xdx

=

1

s−a

,ifs>a

(b) and (c). From part (a),L(eax)=s−^1 aReplaceabyai
L(eiax)=L{cosax+isinax}
=L{cosax}+iL{sinax}
=

1

s−ai

=

s+ai
s^2 +a^2

=

s
s^2 +a^2

+

ia
s^2 +a^2
Equating real and imaginary parts:
L{cosax}=

s
s^2 +a^2

;L{sinax}=

a
x^2 +a^2

1.3.10 Special Functions


1.75 ExpressHnin terms of a generating functionT(ξ,s).


T(ξ,s)=exp[ξ^2 −(s−ξ)^2 ]=exp[−s^2 + 2 sξ]

=

∑∞

n= 0

Hn(ξ)sn
n!

(1)

Differentiate (1) first with respect toξand then with respect to s.
∂T
∂ξ

= 2 sexp(−s^2 + 2 sξ)=


n

2 sn+^1 Hn(ξ)
n!

=


n

snHn′(ξ)
n!

(2)

Equating equal powers of s
Hn′= 2 nHn− 1 (3)
∂T
∂s

=ξ(− 2 s+ 2 ξ)exp(−s^2 + 2 sξ)=


n

(− 2 s+ 2 ξ)snHn(ξ)=


n

sn−^1 Hn(ξ)
(n−1)!
(4)
Equating equal powers of s in the sums of equations
Hn+ 1 = 2 ξHn− 2 nHn− 1 (5)
It is seen that (5) satisfies the Hermite’s equation
Free download pdf