1.3 Solutions 69
H
′′
n−^2 ξH
′
n+^2 nHn=^0
1.76 Jn(x)=
∑
k
(−1)k
(x
2
)n+ 2 k
k!Γ(n+k+1)
(a) Differentiate
d
dx
[xnJn(x)]=Jn(x)nxn−^1 +xn
dJn(x)
dx
=
∑
k
(−1)k
(x
2
)n+ 2 k
nxn−^1
k!Γ(n+k+1)
+
∑xn(n+ 2 k)(−1)kxn+^2 k−^1
k!Γ(n+k+1). 2 n+^2 k
=
∑
k
(−1)k
(x
2
)n+ 2 k− 1
(n+k)xn
k!Γ(n+k+1)
=
∑(−1)k
(x
2
)n+ 2 k− 1
xn
Γ(n+k)
=xnJn− 1 (x)
(b) A similar procedure yields
d
dx
[x−nJn(x)]=−x−nJn+ 1 (x)
1.77 From the result of 1.76(a)
d
dx
[xnJn(x)]=Jn(x)nxn−^1 +xn
dJn(x)
dx
=xnJn− 1 (x)
Divide through out byxn
n
x
Jn(x)+
dJn(x)
dx
=Jn− 1 (x)
Similarly from (b)
−
n
x
Jn(x)+
dJn(x)
dx
=−Jn+ 1 (x)
Add and subtract to get the desired result.
1.78 Jn(x)=
∑∞
k= 0
(−1)k
(x
2
)n+ 2 k
k!Γ(n+k+1)
(a) Therefore, withn= 1 / 2
J 12 (x)=
(x
2
) 1 / 2
Γ
( 3
2
)−
(x
2
) 5 / 2
1 .Γ
( 5
2
)+
(x
2
) 9 / 2
2!Γ
( 7
2
)−···
WritingΓ
( 3
2
)
=
√π
2 ,Γ
( 5
2
)
=^3
√π
4 ,Γ
( 7
2
)
=^158
√
π
J 12 (x)=
√
2
πx
[
x−
x^3
3!
+
x^5
5!
+···
]
=
√
2
πx
sinx
(b) Withn=− 1 / 2
J− 12 (x)=
(x
2
)− 1 / 2
Γ
( 1
2
) −
(x
2
) 3 / 2
1 .Γ
( 3
2
)+
(x
2
) 7 / 2
2!Γ
( 5
2