420 7 Nuclear Physics – I
Now at timet
NE=NE^0 exp(−λEt) (3)
Solution of (2) is
NF=Aexp(−λEt)+Bexp(−λFt)(4)
whereAandBare constants which can be determined by the use of the
initial conditions. Att=0, the initial number ofFis zero, that isNF^0 =0.
Using this condition in (4) givesB=−Aand (4) becomes
NF=A[exp(−λEt)−exp(−λFt)] (5)
Further, dNF/dt=−λEAexp(−λEt)+λFAexp(−λFt)
Att= 0
dNF^0 /dt=λENE^0 =−λEA+λFA
orA=λENA^0 /(λB−λA)(6)
Using (6) in (5)
NF=
λENE^0
λF−λE
[exp(−λEt)−exp(−λFt)] (7)
The time at which the greatest number of RaF atoms is obtained by differ-
entiatingNFwith respect totin (7) and setting dNF/dt= 0
We findtmax=
1
λF−λE
ln
(
λF
λE
)
(8)
λE= 0. 693 / 5 = 0 .1386 day−^1 ,λF= 0. 693 / 138 = 0 .0052 day−^1
Number of bismuth atoms= 6. 02 × 1023 × 5 × 10 −^10 / 210 = 1. 43 × 1012
Using these values in (6) and (5) we find
T= 24 .6 days
NF(max)= 1. 37 × 1010
7.93 In the series decay, A→B→C, ifλA<< λB, that isτA>> τB, secular
equilibrium is reached andNB/NA=λA/λB=T 1 / 2 (B)/T 1 / 2 (A)
Here A=Radium and B=Radon
T 1 / 2 (Radium)=N(radium).T 1 / 2 (Radon)/N(radon)
=
(
1
6. 4 × 10 −^6
)(
3. 825
365
)
= 1 ,637 years
7.94 Activity|dN 1 /dt|=λN 1
|dN 2 /dt|=λN 2 =λN 1 exp(−λt)
Fractional decrease of activity
=[λN 1 −λN 1 exp(−λt)]/λN 1 = 1 −exp(−λt)= 4 / 100
Or exp(−λt)= 24 / 25
λ=
1
t
ln
(
25
24
)
Putt=1h,λ= 0. 0408
τ= 1 /λ= 24 .5h