7.3 Solutions 421
7.95 Let the proportion of^235 U and^238 Uatt=0bex:(1−x). Present day
radioactive atoms for the two components after timetwill be
N 235 =xN 0 exp(−λ 235 t)(1)
N 238 =(1−x)N 0 exp(−λ 238 t)(2)
Dividing (1) by (2)
N 235 /N 238 = 1 / 140 =
xe−(λ^235 −λ^238 )t
1 −x
(3)
λ 235 = 0. 693 /T 1 / 2 ,T 1 / 2 = 8. 8 × 108 years
λ 238 = 0. 693 /T 1 / 2 ,T 1 / 2 = 4. 5 × 109 years
t= 3 × 109 years
Substituting these values in (3) and solving forxwe getx= 1 / 22
Therefore, the ratio of^235 U and^238 Uatoms3× 109 years ago was
1/22:21/22 or 1:21
7.96 |dN/dt|=Nλ
N= 1. 0 × 10 −^6 × 6. 02 × 1023 / 242 = 2. 487 × 1015
|dN/dt|=Nλ
80 + 3 / 3 , 600 = 2. 487 × 1015 × 0. 693 /T 1 / 2
Solving forT 1 / 2 , we findT 1 / 2 = 2. 15 × 1013 sor6. 8 × 105 years
Forα-decay: 80=Nλα= 2. 487 × 105 λα
λα= 1. 01 × 10 −^6 year−^1
For fission 3/ 3 , 600 = 2. 487 × 1015 λf
λf= 1. 05 × 10 −^11 year−^1
7.97 Nsr=Nsr^0 exp(−λsrt)(1)
Ny=
λsrNsr^0
λy−λsr
[exp(λsrt)−exp(−λyt)] (2)
Dividing the two equations
Ny
Nsr
=
λsr
λy−λsr
[1−exp(λsr−λy)t](3)
λsr= 0. 693 /(28× 365 ×24)= 2. 825 × 10 −^6 h−^1
λy= 0. 693 / 64 = 0 .0108 h−^1
(a) Fort=1 h and using the values for the decay constantsNsr/Ny= 3. 56 ×
105
(b) Fort=10 years,Nsr/Ny= 3 , 823
7.98 IfNis the number of atoms of each component att=0, then at timetthe
number of atoms of the two components will be
N 235 =N 0 exp(−λ 235 t)(1)
N 238 =N 0 exp(−λ 238 t)(2)
Dividing the two equations
N 235 /N 238 =(0. 7 /100)=exp−(λ 235 −λ 238 )t (3)