1000 Solved Problems in Modern Physics

(Tina Meador) #1

8.3 Solutions 475


Area of the unit cellA=πr 12
Now,
Σam
Σau

=

Nm
Nu

×

σam
σau

=

ρm/Am
ρu/Au

×

σam
σau

=

1. 62 / 12

18. 7 / 238

×

4. 5 × 10 −^3

7. 68

= 1. 01 × 10 −^3

Vm
Vu

=

182 −π(1.5)^2
π(1.5)^2

= 44. 8

φm
φu

= 1. 6

Hence, f=

1

1 +(1. 01 × 10 −^3 )× 44. 8 × 1. 6

= 0. 933

8.80 The equation for a critical reactor is


∇^2 φ+B^2 φ=0(1)
Whereφis the neutron flux andB^2 is the buckling.
For spherical geometry, Eq. (1) becomes
d^2 φ
dr^2

+

2

r


dr

+B^2 φ=0(2)

which has the solution

φ=

A

r

sin(πr/R)(3)

whereAis the constant of integration andRis the radius of the bare reactor

dr

=−

A

r^2

sin

(πr
R

)

+

πA
Rr

cos

(

π

r
R

)

(4)

d^2 φ
dr^2

=

2 A

r^3

sin

(

π

r
R

)


πA
Rr^2

cos

(πr
R

)


Aπ^2
R^2 r

sin

(

π

r
R

)

(5)

Therefore (2) becomes


Aπ^2
dr^2

sin

(πr
R

)

+

B^2 A

r

sin

(

π

r
R

)

= 0

Therefore,B^2 =π

2
R^2
Or the critical radius,

R=

π
B

(6)

B^2 =

k∞− 1
M^2

=

1. 54 − 1

250

= 2. 16 × 10 −^3 cm−^2

B= 0. 04647

R=

π
0. 04647

=67 cm
Free download pdf