8.3 Solutions 475
Area of the unit cellA=πr 12
Now,
Σam
Σau
=
Nm
Nu
×
σam
σau
=
ρm/Am
ρu/Au
×
σam
σau
=
1. 62 / 12
18. 7 / 238
×
4. 5 × 10 −^3
7. 68
= 1. 01 × 10 −^3
Vm
Vu
=
182 −π(1.5)^2
π(1.5)^2
= 44. 8
φm
φu
= 1. 6
Hence, f=
1
1 +(1. 01 × 10 −^3 )× 44. 8 × 1. 6
= 0. 933
8.80 The equation for a critical reactor is
∇^2 φ+B^2 φ=0(1)
Whereφis the neutron flux andB^2 is the buckling.
For spherical geometry, Eq. (1) becomes
d^2 φ
dr^2
+
2
r
dφ
dr
+B^2 φ=0(2)
which has the solution
φ=
A
r
sin(πr/R)(3)
whereAis the constant of integration andRis the radius of the bare reactor
dφ
dr
=−
A
r^2
sin
(πr
R
)
+
πA
Rr
cos
(
π
r
R
)
(4)
d^2 φ
dr^2
=
2 A
r^3
sin
(
π
r
R
)
−
πA
Rr^2
cos
(πr
R
)
−
Aπ^2
R^2 r
sin
(
π
r
R
)
(5)
Therefore (2) becomes
−
Aπ^2
dr^2
sin
(πr
R
)
+
B^2 A
r
sin
(
π
r
R
)
= 0
Therefore,B^2 =π
2
R^2
Or the critical radius,
R=
π
B
(6)
B^2 =
k∞− 1
M^2
=
1. 54 − 1
250
= 2. 16 × 10 −^3 cm−^2
B= 0. 04647
R=
π
0. 04647
=67 cm