476 8 Nuclear Physics – II
The actual radius will be shorter byd= 0. 71 λtrwhered=extrapolated
distance.
8.81 Letnfissions take place per second.
Energy released per second= 200 nMeV=(200n)(1. 6 × 10 −^13 )J
200 × 1. 6 × 10 −^13 n= 40 × 106
Or n= 1. 25 × 1018 /s
Number of atoms in 1.0 g of^235 U=
6. 02 × 1023
235
= 2. 562 × 1021
Mass of uranium consumed per second=
1. 25 × 1018
2. 562 × 1021
= 4. 88 × 10 −^4 g
Mass consumed in 1 day=(4. 88 × 10 −^4 )(86,400)= 42 .16 g
8.82 Let n be the number of fissions occurring per second in the nuclear reactor.
Energy released= 200 nMeV s−^1
=(200n)(1. 6 × 10 −^13 )J-s−^1
=power= 2 × 107 W
Therefore,n= 6. 25 × 1017 s−^1
In 1 g there areN 0 /A= 6. 02 × 1023 / 235 = 2. 56 × 1021 atoms of^235 U.
Therefore consumption rate of^235 U will be
6. 25 × 1017
2. 56 × 1021
= 2. 44 × 10 −^4 gs−^1
8.83 (a) Let n fissions occur per second. Then energy available will be 200 n MeV
or 200n× 1. 6 × 10 −^13 J. Allowing for 5% wastage and 30% efficiency, net
power used isP= 200 n× 1. 6 × 10 −^13 × 0. 95 × 0. 3 = 9. 12 × 10 −^12 nW.
Required energy in 1 s that is power =
50 × 109 × 103 × 3 , 600
3. 15 × 107
=
5. 714 × 109
Equating the two powers
9. 12 × 10 −^12 n= 5. 714 × 109
n= 6. 26 × 1020 /s
Number of atoms in 1 g of^235 U=
6. 02 × 1023
235
= 2. 56 × 1021
Mass consumed per second=
6. 26 × 1020
2. 56 × 1021
= 0 .244 g
Mass consumed in 1 year= 0. 244 × 3. 15 × 107 g= 7. 7 × 106 g= 7 .7 tons
(b) Volume,V=
M
ρ
=
108
19000
= 526 .3m^3
Power density (Power per unit volume)
P/V=
100 × 106
526. 3
= 1. 9 × 105 W/m^3