478 8 Nuclear Physics – II
Writing sinθ∗dθ∗=−d(cosθ∗), and using (3), (4) becomes
〈
ln
E 1
E 2
〉
=
∫E^1
0
ln
(
E 1
E 2
)
dE 2
E 1
=−
∫
ln
(
E 2
E 1
)
dE 2
E 1
=−
E 2
E 1
ln
E 2
E 1
+
E 2
E 1
∣
∣
∣
∣
E 1
0
At the upper limit the value is 1. At the lower limit, the second term gives
- The first term also contributes zero becausexlnxin the limitx→0gives
zero. Thus,
〈
ln
E 1
E 2
〉
= 1.
8.85 (a) The number of collisions required is
n=
1
ξ
ln
E 0
En
The average logarithmic energy decrement
ξ= 1 +
(A−1)^2
2 A
ln
A− 1
A+ 1
For graphite (A=12),ξ= 0. 158
∴n=
1
0. 158
ln
(
2 × 106
0. 025
)
= 115
(b) Slowing down time
t=
√
2 m
ξΣs
[E
− 1 / 2
f −E
− 1 / 2
i ]
∼=
√
2 mc^2 /Ef
cξΣs
(∵Ei>>Ef)
Inserting the values,mc^2 = 940 × 106 eV,Ef= 0 .025 eV,ξ= 0. 158
andΣs= 0 .385 cm−^1 for graphite, we find the slowing down timet=
1. 5 × 10 −^4 s.
8.86 If Nuis the number of Uranium atom per cm^3 and N 0 is the number of^238 U
atoms per cm^3 , thenN 0 =^139140 Nu. Further,Nm/Nu=400.
Therefore,Nm/N 0 = 400 × 140 / 139 = 402. 9
Thermal utilization factor (f);
f=
Σa(U)
Σa(U)+Σa(m)
=
Nuσa(U)
Nuσa(U)+Nmσa(m)
=
1
1 +NNumσσaa((Um))