1000 Solved Problems in Modern Physics

(Tina Meador) #1

478 8 Nuclear Physics – II


Writing sinθ∗dθ∗=−d(cosθ∗), and using (3), (4) becomes

ln

E 1

E 2


=

∫E^1

0

ln

(

E 1

E 2

)

dE 2
E 1

=−


ln

(

E 2

E 1

)

dE 2
E 1

=−

E 2

E 1

ln

E 2

E 1

+

E 2

E 1





E 1

0
At the upper limit the value is 1. At the lower limit, the second term gives


  1. The first term also contributes zero becausexlnxin the limitx→0gives
    zero. Thus,

    ln


E 1

E 2


= 1.

8.85 (a) The number of collisions required is

n=

1

ξ

ln

E 0

En
The average logarithmic energy decrement

ξ= 1 +

(A−1)^2

2 A

ln

A− 1

A+ 1

For graphite (A=12),ξ= 0. 158

∴n=

1

0. 158

ln

(

2 × 106

0. 025

)

= 115

(b) Slowing down time

t=


2 m
ξΣs

[E

− 1 / 2
f −E

− 1 / 2
i ]

∼=


2 mc^2 /Ef
cξΣs

(∵Ei>>Ef)

Inserting the values,mc^2 = 940 × 106 eV,Ef= 0 .025 eV,ξ= 0. 158
andΣs= 0 .385 cm−^1 for graphite, we find the slowing down timet=
1. 5 × 10 −^4 s.

8.86 If Nuis the number of Uranium atom per cm^3 and N 0 is the number of^238 U
atoms per cm^3 , thenN 0 =^139140 Nu. Further,Nm/Nu=400.
Therefore,Nm/N 0 = 400 × 140 / 139 = 402. 9
Thermal utilization factor (f);


f=

Σa(U)
Σa(U)+Σa(m)

=

Nuσa(U)
Nuσa(U)+Nmσa(m)

=

1

1 +NNumσσaa((Um))

=

1

1 +^402.^97 ×. 680.^0032

= 0. 857
Free download pdf