8.3 Solutions 479
We can now calculatep, the resonance escape probability.
Σs/N 0 =
Σs(U)+Σs(m)
N 0
=σs(U)+
Nm
Nu
σa(M)
= 8. 3 + 402. 9 × 4. 8 =1942 b
We can use the empirical relation for the effective resonance integral (ERI)
∫E^0
E
(σa)eff
dE
E
= 3. 85 (Σs/N 0 )^0.^415 = 3 .85(1942)^0.^145 =89 b
We have ignored the contribution of Uranium to the scattering as its inclu-
sion hardly changes the result. ThusΣ 0 /N 0 Σs/N 0 =
Nm
N 0
σs(M) =
402. 9 × 4. 8 = 1934
p=exp
[
−(ERI)
/
Σ 0 ξ
N 0
]
=exp
(
−
89
1934 × 0. 158
)
= 0. 747
The reproduction factor
k∞=ξnfp=(1.0)(1.34)(0.857)(0.747)= 0. 858
Thus,k∞<1, and so the reactor cannot go critical.
8.87 The spatial distribution was derived for Problem 8.78.
φ(r)=
3 Q
4 πλtr
e−r/L
r
(1)
If 1% of the neutrons are to escape then
φ(r)
Q
=
1
100
=
3
4 πλtr
e−r/L
r
(2)
L=
(
λtrλa
3
) 1 / 2
λs=
1
Σs
=
A
σsN 0 ρ
=
9
5. 6 × 10 −^24 × 6. 02 × 1023 × 1. 85
= 1 .443 cm
λs=
1
Σa
=
A
σaN 0 ρ
=
9
10 × 10 −^27 × 6. 02 × 1023 × 1. 85
=808 cm
λtr=
λs
1 − 32 A
=
1. 443
1 −
2
3 × 9
= 1 .564 cm
L=
(
1. 564 × 808
3
) 1 / 2
= 20 .52 cm
Inserting the values ofλtrandLin (2) and solving forr, we getr= 9 .6cm.
Thus the radius ought to be greater than 9.6 cm.