1.3 Solutions 69
H′′
n−^2 ξH′
n+^2 nHn=^01.76 Jn(x)=
∑
k(−1)k(x
2)n+ 2 kk!Γ(n+k+1)(a) Differentiate
d
dx[xnJn(x)]=Jn(x)nxn−^1 +xndJn(x)
dx=∑
k(−1)k(x
2)n+ 2 k
nxn−^1
k!Γ(n+k+1)+
∑xn(n+ 2 k)(−1)kxn+^2 k−^1
k!Γ(n+k+1). 2 n+^2 k=
∑
k(−1)k(x
2)n+ 2 k− 1
(n+k)xn
k!Γ(n+k+1)=
∑(−1)k(x
2)n+ 2 k− 1
xn
Γ(n+k)=xnJn− 1 (x)(b) A similar procedure yields
d
dx[x−nJn(x)]=−x−nJn+ 1 (x)1.77 From the result of 1.76(a)
d
dx
[xnJn(x)]=Jn(x)nxn−^1 +xndJn(x)
dx=xnJn− 1 (x)
Divide through out byxn
n
xJn(x)+dJn(x)
dx=Jn− 1 (x)
Similarly from (b)−n
xJn(x)+dJn(x)
dx=−Jn+ 1 (x)
Add and subtract to get the desired result.1.78 Jn(x)=
∑∞
k= 0(−1)k(x
2)n+ 2 kk!Γ(n+k+1)(a) Therefore, withn= 1 / 2J 12 (x)=(x
2) 1 / 2
Γ
( 3
2)−
(x
2) 5 / 2
1 .Γ
( 5
2)+
(x
2) 9 / 2
2!Γ
( 7
2)−···
WritingΓ( 3
2)
=
√π
2 ,Γ( 5
2)
=^3
√π
4 ,Γ( 7
2)
=^158
√
πJ 12 (x)=√
2
πx[
x−x^3
3!+
x^5
5!+···
]
=
√
2
πxsinx(b) Withn=− 1 / 2J− 12 (x)=(x
2)− 1 / 2
Γ
( 1
2) −
(x
2) 3 / 2
1 .Γ
( 3
2)+
(x
2) 7 / 2
2!Γ
( 5
2