72 1 Mathematical Physics
(b) Differentiate with respect tox
∂T
∂x=s(1− 2 sx+s^2 )−(^32)
=
∑
(1− 2 sx+s^2 )−^1 plsl+^1=
∑
pl′slMultiply by (1− 2 sx+s^2 )
∑
sl+^1 pl=∑
(sl− 2 xsl+^1 +sl+^2 )p′lEquate coefficients ofsl+^1
pl=p′l+ 1 − 2 xpl′+pl′− 1orpl(x)+ 2 xpl′(x)=p′l+ 1 +p′l− 11.82
e−xs
1 −s
1 −s=
∑∞
n= 0Ln(x)sn
n!
Putx= 0∑∞n= 0Ln(0)sn
n!=
1
1 −s= 1 +s+s^2 +···sn+···=∑∞
n= 0snThereforeLn(0)=n!1.3.11 ComplexVariables.................................
1.83 (a) Since the pole atz=2 is not interior to|z|=1, the integral equals zero
(b) Since the pole atz=2 is interior to|z+i|=3, the integral equals 2πi.
1.84 Method 1
∮c4 z^2 − 3 z+ 1
(z−1)^3dz=∮
c4(z−1)^2 +5(z−1)+ 2
(z−1)^3dz= 4
∮
cdz
z− 1+ 5
∮
cdz
(z−1)^2+ 2
∮
cdz
(z−1)^3
=4(2πi)+5(0)+6(0)= 8 πi
where we have used the result