1.3 Solutions 71
1.80 Legendre’s equation is
(1−x^2 )
∂^2 Pn(x)
∂x^2− 2 x
∂Pn(x)
∂x+n(n+1)Pn(x)=0(1)Putx=cosθ, Eq. (1) then becomessin^2 θ∂^2 Pn
∂cos^2 θ−2 cosθ∂Pn
∂cosθ+n(n+1)Pn=0(2)For largen,n(n+1)→n^2 , and cosθ→1 for smallθ,sin^2 θ∂^2 Pn
∂cos^2 θ− 2
∂Pn
∂cosθ+n^2 Pn=0(3)Now, Bessel’s equation of zero order isx^2d^2 J 0 (x)
dx^2+xd
dxJ 0 (x)+x^2 J 0 (x)=0(4)Lettingx= 2 nsinθ/ 2 =nsinθ,in(4)forsmallθ, and noting that cosθ→
1, after simple manipulation we getsin^2 θd^2 J 0 (nsinθ)
dcos^2 θ− 2 ddJ 0 (nsinθ)
dcosθ+n^2 J 0 (nsinθ)=0(5)Comparing (5) with (3), we conclude thatPn(cosθ)→J 0 (nsinθ)1.81 T(x,s)=(1− 2 sx+s^2 )−^1 /^2 =
∑
pl(x)sl(1)
(a) Differentiate (1) with respect tos.
∂T
∂s=(x−s)(1− 2 sx+s^2 )−3
2=
∑
(x−s)(1− 2 sx+s^2 )−^1 pl(x)sl=∑
lpl(x)sl−^1Multiply by (1− 2 sx+s^2 )
∑
(x−s)plsl=∑
lplsl−^1 (1− 2 sx+s^2 )Equate the coefficients ofslxpl−pl− 1 =(l+1)pl+ 1 − 2 xlpl+(l−1)pl− 1or (l+1)pl+ 1 =(2l+1)xpl−lpl− 1