JEAN-PAUL PAQUIN, ANNICK LAMBERT AND ALAIN CHARBONNEAU 299
and
̃X=^1
n(1−ρ)
[u ̃ 1 (1−ρn)+u ̃ 2 (1−ρn−^1 )+u ̃ 3 (1−ρn−^2 )+···
+u ̃n− 2 (1−ρ^3 )+u ̃n− 1 (1−ρ^2 )+u ̃n(1−ρ)]
By settingwt= 1 −ρn−t+^1 the mean random variable becomes equal to:
̃X=^1
n(1−ρ)
∑n
t= 1
wtu ̃t (A.5)
Let us now demonstrate that the weighted sum of random variablesu ̃tobeys the CLT.
Given the initial assumptions governing the randomu ̃t’s, we obtain:
E( ̃X)=^1
n(1−ρ)
∑n
t= 1
wtE(u ̃t)= 0
and
V(X ̃)=
1
n^2 (1−ρ)^2
∑n
t= 1
w^2 tV(u ̃t)=
1
n^2 (1−ρ)^2
∑n
t= 1
w^2 t
The CLT will be established once we show that:
nlim→∞
∑n
t= 1
wtu ̃t
√
∑n
t= 1
w^2 t
→N(0, 1)
Given that theu ̃t’s are independent in probability, then the characteristic function is
equal to:
φ∑n
t= 1
wt ̃ut
√∑n
t= 1
w^2 t
(h)=E
(
e
ih√∑∑wt ̃ut
w^2 t
)
=
∏n
t= 1
e
√ihw∑t ̃ut
w^2 t =
∏n
t= 1
φu ̃
√wth
∑
w^2 t
The logarithm of the characteristic function then becomes:
√∑wtu ̃t
∑w 2
t
=
∑n
t= 1
logφu ̃t
wth
√∑
w^2 t
=
∑n
t= 1
log
1 +i√wt
∑
w^2 t
hμ 1 −
1
2
√wt
∑
w^2 t
2
h^2 μ 2
−
i
3!
√wt
∑
w^2 t
3
h^3 μ 3 +
1
4!
√wt
∑
wt^2
4
h^4 μ 4 +...