JEAN-PAUL PAQUIN, ANNICK LAMBERT AND ALAIN CHARBONNEAU 299and
̃X=^1
n(1−ρ)
[u ̃ 1 (1−ρn)+u ̃ 2 (1−ρn−^1 )+u ̃ 3 (1−ρn−^2 )+···+u ̃n− 2 (1−ρ^3 )+u ̃n− 1 (1−ρ^2 )+u ̃n(1−ρ)]By settingwt= 1 −ρn−t+^1 the mean random variable becomes equal to:
̃X=^1
n(1−ρ)∑nt= 1wtu ̃t (A.5)Let us now demonstrate that the weighted sum of random variablesu ̃tobeys the CLT.
Given the initial assumptions governing the randomu ̃t’s, we obtain:
E( ̃X)=^1
n(1−ρ)∑nt= 1wtE(u ̃t)= 0and
V(X ̃)=
1
n^2 (1−ρ)^2∑n
t= 1w^2 tV(u ̃t)=
1
n^2 (1−ρ)^2∑n
t= 1w^2 tThe CLT will be established once we show that:
nlim→∞∑n
t= 1wtu ̃t
√
∑n
t= 1w^2 t→N(0, 1)Given that theu ̃t’s are independent in probability, then the characteristic function is
equal to:
φ∑n
t= 1
wt ̃ut
√∑n
t= 1
w^2 t(h)=E(
eih√∑∑wt ̃ut
w^2 t)
=∏nt= 1e√ihw∑t ̃ut
w^2 t =
∏nt= 1φu ̃
√wth
∑
w^2 t
The logarithm of the characteristic function then becomes:
√∑wtu ̃t
∑w 2
t=∑nt= 1logφu ̃t
wth
√∑
w^2 t
=∑nt= 1log
 1 +i√wt
∑
w^2 thμ 1 −
1
2
√wt
∑
w^2 t
2
h^2 μ 2−
i
3!
√wt
∑
w^2 t
3
h^3 μ 3 +
1
4!
√wt
∑
wt^2
4
h^4 μ 4 +...
