Advances in Risk Management

(Michael S) #1
300 NPV PROBABILITY DISTRIBUTION OF RISKY INVESTMENTS

We may express the logarithm of the characteristic function in terms of its cumulants:


√∑wtu ̃t
∑w 2
t

=

∑n

t= 1

logφ ̃εt




wth
√∑
w^2 t




=

∑n
t= 1


i√wt

w^2 t

hK 1 −
1
2


√wt

w^2 t




2
h^2 K 2


i
3!




wt
√∑
w^2 t




3
h^3 K 3 +
1
4!




αt
√∑
α^2 t




4
h^4 K 4 +...





By assumption, we have setK 1 =0etK 2 =1 whereas
∑n
t= 1


(
√∑wt
w^2 t

) 2
=1. Therefore:

√∑wtu ̃t
∑w 2
t

=

∑n

t= 1

logφε


√wth

w^2 t


=−h^2
2

i
3!

∑n

t= 1


√wt

w^2 t




3
h^3 K 3

+
1
4!

∑n
t= 1




wt
√∑
w^2 t




4
h^4 K 4 +...

The limit value of the logarithm of the characteristic function becomes:


nlim→∞√∑wtu ̃t
∑w 2
t

=nlim→∞

∑n

t= 1

logφ ̃ε




wth
√∑
w^2 t




=nlim→∞



−

h^2
2

i
3!

∑n

t= 1




wt
√∑
w^2 t




3
h^3 K 3

+
1
4!

∑n
t= 1




wt
√∑
w^2 t




4
h^4 K 4 +...




Furthermore, given 0≤ρ<1, it follows that:


nlim→∞

w^21
∑n
t= 1

w^2 t

=nlim→∞
(1−ρn−t+^1 )
∑n
t= 1

(1−ρn−t+^1 )^2

=lim
n→∞

(1−ρn−t+i)
∑n
t= 1

(1+ρ2(n−t+1)− 2 ρn−t+^1 )

=nlim→∞
1
n
= 0
Free download pdf