300 NPV PROBABILITY DISTRIBUTION OF RISKY INVESTMENTS
We may express the logarithm of the characteristic function in terms of its cumulants:
√∑wtu ̃t
∑w 2
t
=
∑n
t= 1
logφ ̃εt
wth
√∑
w^2 t
=
∑n
t= 1
i√wt
∑
w^2 t
hK 1 −
1
2
√wt
∑
w^2 t
2
h^2 K 2
−
i
3!
wt
√∑
w^2 t
3
h^3 K 3 +
1
4!
αt
√∑
α^2 t
4
h^4 K 4 +...
By assumption, we have setK 1 =0etK 2 =1 whereas
∑n
t= 1
(
√∑wt
w^2 t
) 2
=1. Therefore:
√∑wtu ̃t
∑w 2
t
=
∑n
t= 1
logφε
√wth
∑
w^2 t
=−h^2
2
−
i
3!
∑n
t= 1
√wt
∑
w^2 t
3
h^3 K 3
+
1
4!
∑n
t= 1
wt
√∑
w^2 t
4
h^4 K 4 +...
The limit value of the logarithm of the characteristic function becomes:
nlim→∞√∑wtu ̃t
∑w 2
t
=nlim→∞
∑n
t= 1
logφ ̃ε
wth
√∑
w^2 t
=nlim→∞
−
h^2
2
−
i
3!
∑n
t= 1
wt
√∑
w^2 t
3
h^3 K 3
+
1
4!
∑n
t= 1
wt
√∑
w^2 t
4
h^4 K 4 +...
Furthermore, given 0≤ρ<1, it follows that:
nlim→∞
w^21
∑n
t= 1
w^2 t
=nlim→∞
(1−ρn−t+^1 )
∑n
t= 1
(1−ρn−t+^1 )^2
=lim
n→∞
(1−ρn−t+i)
∑n
t= 1
(1+ρ2(n−t+1)− 2 ρn−t+^1 )
=nlim→∞
1
n
= 0