Chapter 17
Compound angles
17.1 Compound angle formulae
An electric current i maybeexpressedasi=
5sin(ωt− 0. 33 )amperes. Similarly, the displacement
xof a body from a fixed point can be expressed as
x=10sin( 2 t+ 0. 67 )metres.Theangles(ωt− 0 .33)and
(2t+ 0 .67) are calledcompound anglesbecause they
are the sum or difference of two angles. Thecompound
angle formulaefor sines and cosines of the sum and
difference of two anglesAandBare:
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB−cosAsinB
cos(A+B)=cosAcosB−sinAsinB
cos(A−B)=cosAcosB+sinAsinB(Note, sin(A+B)isnotequal to(sinA+sinB),and
so on.)
The formulae stated above may be used to derive two
further compound angle formulae:
tan(A+B)=tanA+tanB
1 −tanAtanBtan(A−B)=
tanA−tanB
1 +tanAtanBThe compound-angle formulae are true for all values of
AandB, and by substitutingvalues ofAandBinto the
formulae they may be shown to be true.
Problem 1. Expand and simplify the following
expressions:
(a) sin(π+α) (b)−cos( 90 ◦+β)
(c) sin(A−B)−sin(A+B)(a) sin(π+α)=sinπcosα+cosπsinα(from
the formula forsin(A+B))
=( 0 )(cosα)+(− 1 )sinα=−sinα(b) −cos( 90 ◦+β)=−[cos90◦cosβ−sin90◦sinβ]
=−[( 0 )(cosβ)−( 1 )sinβ]=sinβ(c) sin(A−B)−sin(A+B)=[sinAcosB−cosAsinB]
−[sinAcosB+cosAsinB]
=−2cosAsinBProblem 2. Prove thatcos(y−π)+sin(
y+π
2)
= 0.cos(y−π)=cosycosπ+sinysinπ
=(cosy)(− 1 )+(siny)( 0 )
=−cosysin(
y+π
2)
=sinycosπ
2+cosysinπ
2
=(siny)( 0 )+(cosy)( 1 )=cosyHence cos(y−π)+sin(
y+π
2)=(−cosy)+(cosy)= 0Problem 3. Show thattan(
x+π
4)
tan(
x−π
4)
=− 1.