172 Higher Engineering Mathematics
Solving the simultaneous equations gives:A=X+Y
2andB=X−Y
2
Thus sin(A+B)+sin(A−B)=2sinAcosBbecomes,sinX+sinY=2sin(
X+Y
2)
cos(
X−Y
2)
(5)Similarly,sinX−sinY=2cos(
X+Y
2)
sin(
X−Y
2)
(6)cosX+cosY=2cos(
X+Y
2)
cos(
X−Y
2)
(7)cosX−cosY=−2sin(
X+Y
2)
sin(
X−Y
2)
(8)Problem 19. Express sin5θ+sin3θas a product.From equation (5),sin5θ+sin3θ=2sin(
5 θ+ 3 θ
2)
cos(
5 θ− 3 θ
2)=2sin4θcosθProblem 20. Express sin7x−sinxas a product.From equation (6),sin7x−sinx=2cos(
7 x+x
2)
sin(
7 x−x
2)=2cos4xsin3xProblem 21. Express cos2t−cos5tas a
product.From equation (8),cos2t−cos5t=−2sin(
2 t+ 5 t
2)
sin(
2 t− 5 t
2)=−2sin7
2tsin(
−3
2t)
=2sin7
2tsin3
2t
(
since sin(
−3
2t)
=−sin3
2t)Problem 22. Show thatcos6x+cos2x
sin6x+sin2x=cot 4x.From equation (7),
cos6x+cos2x=2cos4xcos2xFrom equation (5),
sin6x+sin2x=2sin4xcos2xHence
cos6x+cos 2x
sin6x+sin2x=2cos4xcos2x
2sin4xcos2x=cos4x
sin4x=cot 4xProblem 23. Solve the equation
cos4θ+cos2θ=0forθin the range 0◦≤θ≤ 360 ◦.From equation (7),
cos4θ+cos2θ=2cos(
4 θ+ 2 θ
2)
cos(
4 θ− 2 θ
2)Hence, 2cos3θcosθ= 0
Dividing by 2 gives: cos3θcosθ= 0
Hence, either cos3θ=0orcosθ= 0Thus, 3 θ=cos−^1 0orθ=cos−^10from which, 3θ= 90 ◦or 270◦or 450◦or 630◦or
810 ◦or 990◦
and θ= 30 ◦, 90 ◦, 150 ◦, 210 ◦, 270 ◦or 330◦Now try the following exerciseExercise 76 Further problems on changing
sums or differences of sines and cosines into
products
In Problems 1 to 5, express as products:- sin3x+sinx [2sin2xcosx]
 2.^12 (sin 9θ−sin7θ) [cos8θsinθ]
- cos5t+cos3t [2cos4tcost]
 4.^18 (cos 5t−cost)
[
−^14 sin3tsin2t]5.^12
(
cosπ
3+cosπ
4) [
cos7 π
24cosπ
24]- Show that:
 (a)
sin4x−sin2x
cos4x+cos2x=tanx(b)^12 {sin( 5 x−α)−sin(x+α)}
=cos3xsin( 2 x−α)