Chapter 23
The solution of simultaneous
equationsbymatricesand
determinants
23.1 Solution of simultaneous
equations by matrices
(a) The procedure for solving linear simultaneous
equations intwo unknowns using matricesis:
(i) write the equations in the form
a 1 x+b 1 y=c 1
a 2 x+b 2 y=c 2
(ii) write the matrix equation corresponding to
these equations,
i.e.
(
a 1 b 1
a 2 b 2)
×(
x
y)
=(
c 1
c 2)(iii) determine the inverse matrix of(
a 1 b 1
a 2 b 2)i.e.1
a 1 b 2 −b 1 a 2(
b 2 −b 1
−a 2 a 1)(from Chapter 22)
(iv) multiplyeach side of (ii) by the inverse
matrix, and
(v) solve forxandyby equating corresponding
elements.Problem 1. Use matrices to solve the
simultaneous equations:
3 x+ 5 y− 7 =0(1)
4 x− 3 y− 19 =0(2)(i) Writing the equations in thea 1 x+b 1 y=cform
gives:3 x+ 5 y= 7
4 x− 3 y= 19(ii) The matrix equation is(
35
4 − 3)
×(
x
y)
=(
7
19)(iii) The inverse of matrix(
35
4 − 3)
is1
3 ×(− 3 )− 5 × 4(
− 3 − 5
− 43)i.e.⎛
⎜
⎝3
295
29
4
29− 3
29⎞
⎟
⎠(iv) Multiplying each side of (ii) by (iii) and
remembering thatA×A−^1 =I, the unit matrix,
gives:
(
10
01)(
x
y)
=⎛
⎜
⎜
⎝3
295
29
4
29− 3
29⎞
⎟
⎟
⎠×(
7
19)