14 Higher Engineering Mathematics
The denominator factorizes as (x−1) (x+3) and the
numerator is of less degree than the denominator. Thus
11 − 3 x
x^2 + 2 x− 3may be resolved into partial fractions.Let
11 − 3 x
x^2 + 2 x− 3≡
11 − 3 x
(x− 1 )(x+ 3 )≡A
(x− 1 )+B
(x+ 3 )whereAandBare constants to be determined,i.e.11 − 3 x
(x− 1 )(x+ 3 )≡A(x+ 3 )+B(x− 1 )
(x− 1 )(x+ 3 ),by algebraic addition.
Since the denominators are the same on each side
of the identity then the numerators are equal toeach
other.
Thus, 11− 3 x≡A(x+ 3 )+B(x− 1 )
To determine constantsAandB,valuesofxare chosen
to make the term inAorBequal to zero.
Whenx=1, then11 − 3 ( 1 )≡A( 1 + 3 )+B( 0 )
i.e. 8 = 4 A
i.e. A= 2Whenx=−3, then11 − 3 (− 3 )≡A( 0 )+B(− 3 − 1 )
i.e. 20 =− 4 B
i.e. B=− 5Thus11 − 3 x
x^2 + 2 x− 3≡2
(x− 1 )+− 5
(x+ 3 )≡2
(x− 1 )−5
(x+ 3 )[
Check:2
(x− 1 )−5
(x+ 3 )=2 (x+ 3 )− 5 (x− 1 )
(x− 1 )(x+ 3 )=11 − 3 x
x^2 + 2 x− 3]Problem 2. Convert2 x^2 − 9 x− 35
(x+ 1 )(x− 2 )(x+ 3 )into
the sum of three partial fractions.Let2 x^2 − 9 x− 35
(x+ 1 )(x− 2 )(x+ 3 )≡A
(x+ 1 )+B
(x− 2 )+C
(x+ 3 )≡(
A(x− 2 )(x+ 3 )+B(x+ 1 )(x+ 3 )
+C(x+ 1 )(x− 2 ))(x+ 1 )(x− 2 )(x+ 3 )by algebraic addition.
Equating the numerators gives:2 x^2 − 9 x− 35 ≡A(x− 2 )(x+ 3 )+B(x+ 1 )(x+ 3 )+C(x+ 1 )(x− 2 )Letx=−1. Then2 (− 1 )^2 − 9 (− 1 )− 35 ≡A(− 3 )( 2 )
+B(0)(2)+C( 0 )(− 3 )i.e. − 24 =− 6 Ai.e. A=− 24
− 6= 4Letx=2. Then2 ( 2 )^2 − 9 ( 2 )− 35 ≡A( 0 )( 5 )+B( 3 )( 5 )+C( 3 )( 0 )i.e. − 45 = 15 Bi.e. B=− 45
15=− 3Letx=−3. Then2 (− 3 )^2 − 9 (− 3 )− 35 ≡A(− 5 )( 0 )+B(− 2 )( 0 )
+C(− 2 )(− 5 )
i.e. 10 = 10 C
i.e. C= 1Thus2 x^2 − 9 x− 35
(x+ 1 )(x− 2 )(x+ 3 )≡4
(x+ 1 )−3
(x− 2 )+1
(x+ 3 )Problem 3. Resolvex^2 + 1
x^2 − 3 x+ 2into partial
fractions.