Partial fractions 15
The denominatoris ofthe same degree as the numerator.
Thus dividing out gives:1
x^2 − 3 x+ 2)
x^2 + 1
x^2 − 3 x+ 2
—————
3 x− 1
———For more on polynomial division, see Section 1.4,
page 6.Hence
x^2 + 1
x^2 − 3 x+ 2≡ 1 +3 x− 1
x^2 − 3 x+ 2≡ 1 +3 x− 1
(x− 1 )(x− 2 )Let3 x− 1
(x− 1 )(x− 2 )≡A
(x− 1 )+B
(x− 2 )≡A(x− 2 )+B(x− 1 )
(x− 1 )(x− 2 )Equating numerators gives:3 x− 1 ≡A(x− 2 )+B(x− 1 )Letx= 1 .Then 2=−Ai.e. A=− 2
Letx= 2 .Then 5 =BHence3 x− 1
(x− 1 )(x− 2 )≡− 2
(x− 1 )+5
(x− 2 )Thusx^2 + 1
x^2 − 3 x+ 2≡ 1 −2
(x− 1 )+5
(x− 2 )Problem 4. Expressx^3 − 2 x^2 − 4 x− 4
x^2 +x− 2in partial
fractions.The numerator is ofhigher degree than the denominator.
Thus dividing out gives:
x− 3
x^2 +x− 2)
x^3 − 2 x^2 − 4 x− 4
x^3 + x^2 − 2 x
——————
− 3 x^2 − 2 x− 4
− 3 x^2 − 3 x+ 6
———————
x− 10Thusx^3 − 2 x^2 − 4 x− 4
x^2 +x− 2≡x− 3 +x− 10
x^2 +x− 2≡x− 3 +x− 10
(x+ 2 )(x− 1 )Letx− 10
(x+ 2 )(x− 1 )≡A
(x+ 2 )+B
(x− 1 )≡A(x− 1 )+B(x+ 2 )
(x+ 2 )(x− 1 )
Equating the numerators gives:
x− 10 ≡A(x− 1 )+B(x+ 2 )
Letx=− 2 .Then − 12 =− 3 A
i.e. A= 4
Letx= 1 .Then − 9 = 3 B
i.e. B=− 3Hencex− 10
(x+ 2 )(x− 1 )≡4
(x+ 2 )−3
(x− 1 )Thusx^3 − 2 x^2 − 4 x− 4
x^2 +x− 2≡x− 3 +4
(x+ 2 )−3
(x− 1 )Now try the following exerciseExercise 8 Further problemson partial
fractions with linear factorsResolve the following into partial fractions.1.12
x^2 − 9[
2
(x− 3 )−2
(x+ 3 )]2.4 (x− 4 )
x^2 − 2 x− 3[
5
(x+ 1 )−1
(x− 3 )]3.x^2 − 3 x+ 6
x(x− 2 )(x− 1 )[
3
x+2
(x− 2 )−4
(x− 1 )]4.3 ( 2 x^2 − 8 x− 1 )
(x+ 4 )(x+ 1 )( 2 x− 1 )
[
7
(x+ 4 )−3
(x+ 1 )−2
( 2 x− 1 )]