316 Higher Engineering Mathematics
(a) Ellipse (b) Parabola(c) Hyperbola (d) Rectangular hyperbola(e) Cardioid (f) Astroid(g) CycloidFigure 29.1It may be shown that this can be written as:dy
dx=dy
dθ
dx
dθ(1)For the second differential,d^2 y
dx^2=d
dx(
dy
dx)
=d
dθ(
dy
dx)
·dθ
dxord^2 y
dx^2=d
dθ(
dy
dx)dx
dθ(2)Problem 1. Givenx= 5 θ−1and
y= 2 θ(θ− 1 ), determinedy
dxin terms ofθ.x= 5 θ− 1 ,hencedy
dθ= 5y= 2 θ(θ− 1 )= 2 θ^2 − 2 θ,hencedy
dθ= 4 θ− 2 = 2 ( 2 θ− 1 )From equation (1),dy
dx=dy
dθ
dx
dθ=2 ( 2 θ− 1 )
5or2
5( 2 θ− 1 )Problem 2. The parametric equations of a
function are given byy=3cos2t,x=2sint.Determine expressions for (a)dy
dx(b)d^2 y
dx^2.(a) y=3cos2t, hencedy
dt=−6sin2tx=2sint, hencedx
dt=2costFrom equation (1),dy
dx=dy
dt
dx
dt=−6sin2t
2cost=− 6 (2sintcost)
2costfrom double angles, Chapter 17i.e.dy
dx=−6sint(b) From equation (2),d^2 y
dx^2=d
dt(
dy
dx)dx
dt=d
dt(−6sint)2cost=−6cost
2costi.e.d^2 y
dx^2=− 3Problem 3. The equation of a tangent drawn to a
curve at point(x 1 ,y 1 )is given by:y−y 1 =dy 1
dx 1(x−x 1 )