Chapter 32
Differentiation of hyperbolic
functions
32.1 Standard differential coefficients
of hyperbolic functions
From Chapter 5,
d
dx(sinhx)=d
dx(
ex−e−x
2)
=[
ex−(−e−x)
2]=(
ex+e−x
2)
=coshxIf y=sinhax,where‘a’ is a constant, then
dy
dx
=acoshaxddx
(coshx)=d
dx(
ex+e−x
2)
=[
ex+(−e−x)
2]=(
ex−e−x
2)
=sinhxIf y=coshax,where‘a’ is a constant, then
dy
dx
=asinhaxUsing the quotient rule of differentiationthe derivatives
of tanhx, sechx, cosechxand cothxmay be determined
using the above results.
Problem 1. Determine the differential coefficient
of: (a) thx(b) sechx.(a)d
dx(thx)=d
dx(
shx
chx)=(chx)(chx)−(shx)(shx)
ch^2 x
using the quotient rule=ch^2 x−sh^2 x
ch^2 x=1
ch^2 x=sech^2 x(b)d
dx(sechx)=d
dx(
1
chx)=(chx)( 0 )−( 1 )(shx)
ch^2 x=−shx
ch^2 x=−(
1
chx)(
shx
chx)=−sechxthxProblem 2. Determinedy
dθgiven
(a)y=cosechθ (b)y=cothθ.(a)d
dθ(cosecθ)=d
dθ(
1
shθ)=(shθ)( 0 )−( 1 )(chθ)
sh^2 θ=−chθ
sh^2 θ=−(
1
shθ)(
chθ
shθ)=−cosechθcothθ