332 Higher Engineering Mathematics
(b)d
dθ(cothθ)=d
dθ(
chθ
shθ)=(shθ)(shθ)−(chθ)(chθ)
sh^2 θ=sh^2 θ−ch^2 θ
sh^2 θ=−(ch^2 θ−sh^2 θ)
sh^2 θ=− 1
sh^2 θ=−cosech^2 θSummary of differential coefficientsyorf(x)dy
dxorf′(x)sinhax acoshax
coshax asinhaxtanhax asech^2 axsechax −asechaxtanhaxcosechax −acosechaxcothax
cothax −acosech^2 ax32.2 Further worked problems on
differentiation of hyperbolic
functions
Problem 3. Differentiate the following with
respect tox:(a)y=4sh2x−3
7ch3x(b)y=5thx
2−2coth4x.(a) y=4sh2x−3
7ch3xdy
dx= 4 (2cosh2x)−3
7(3sinh3x)=8cosh2x−9
7sinh3x(b) y=5thx
2−2coth4xdy
dx= 5(
1
2sech^2x
2)
− 2 (−4cosech^24 x)=5
2sech^2x
2+8cosech^24 xProblem 4. Differentiate the following with
respect to the variable: (a)y=4sin3tch4t
(b)y=ln(sh3θ)−4ch^23 θ.(a) y=4sin3tch4t(i.e. a product)
dy
dx=(4sin3t)(4sh4t)+(ch4t)( 4 )(3cos3t)=16sin3tsh4t+12ch4tcos3t
= 4 (4sin3tsh4t+3cos3tch4t)(b) y=ln(sh3θ)−4ch^23 θ
(i.e. a function of a function)
dy
dθ=(
1
sh3θ)
(3ch3θ)−( 4 )(2ch3θ)(3sh3θ)=3coth3θ−24ch3θsh3θ= 3 (coth3θ−8ch3θsh3θ)Problem 5. Show that the differential coefficient
ofy=3 x^2
ch4xis: 6xsech4x( 1 − 2 xth4x).y=3 x^2
ch4x(i.e. a quotient)dy
dx=(ch 4x)( 6 x)−( 3 x^2 )(4sh4x)
(ch4x)^2=6 x(ch 4x− 2 xsh4x)
ch^24 x= 6 x[
ch4x
ch^24 x−2 xsh4x
ch^24 x]= 6 x[
1
ch4x− 2 x(
sh4x
ch4x)(
1
ch4x)]= 6 x[sech 4x− 2 xth4xsech4x]= 6 xsech4x(1− 2 xth4x)