336 Higher Engineering Mathematics
Thusdy
dx=1
dx
dy=1
√
a^2 −x^2i.e.when y=sin−^1x
athendy
dx=1
√
a^2 −x^2
Since integration is the reverse process of differ-
entiation then:
∫
1
√
a^2 −x^2dx=sin−^1
x
a+c(iv) Giveny=sin−^1 f(x)the function of a function
rulemaybeusedtofinddy
dx
Letu=f(x)theny=sin−^1 uThendu
dx=f′(x) anddy
du=1
√
1 −u^2
(see para. (i))Thusdy
dx=dy
du×du
dx=1
√
1 −u^2f′(x)=f′(x)
√
1 −[f(x)]^2(v) The differential coefficients of the remaining
inverse trigonometric functions are obtained in
a similar manner to that shown above and a
summary of the results is shown in Table 33.1.Problem 1. Finddy
dxgiveny=sin−^15 x^2.From Table 33.1(i), ify=sin−^1 f(x)thendy
dx=f′(x)
√
1 −[f(x)]^2Hence, if y=sin−^15 x^2 then f(x)= 5 x^2 and
f′(x)= 10 x.Thusdy
dx=10 x
√
1 −( 5 x^2 )^2=10 x
√
1 − 25 x^4Problem 2.
(a) Show that ify=cos−^1 xthen
dy
dx=1
√
1 −x^2
(b) Hence obtain the differential coefficient of
y=cos−^1 ( 1 − 2 x^2 ).Table 33.1Differential coefficients of inverse
trigonometric functionsyor f(x)dy
dxor f′(x)(i) sin−^1x
a1
√
a^2 −x^2sin−^1 f(x)f′(x)
√
1 −[f(x)]^2(ii) cos−^1x
a− 1
√
a^2 −x^2cos−^1 f(x)−f′(x)
√
1 −[f(x)]^2(iii) tan−^1x
aa
a^2 +x^2tan−^1 f(x)f′(x)
1 +[f(x)]^2(iv) sec−^1x
aa
x√
x^2 −a^2sec−^1 f(x)f′(x)
f(x)√
[f(x)]^2 − 1(v) cosec−^1x
a−a
x√
x^2 −a^2cosec−^1 f(x)−f′(x)
f(x)√
[f(x)]^2 − 1(vi) cot−^1x
a−a
a^2 +x^2cot−^1 f(x)−f′(x)
1 +[f(x)]^2(a) Ify=cos−^1 xthenx=cosy.Differentiating with respect toygives:
dx
dy=−siny=−√
1 −cos^2 y=−√
1 −x^2Hencedy
dx=1
dx
dy=−1
√
1 −x^2The principal value of y=cos−^1 x is defined as the
angle lying between 0 andπ, i.e. between pointsC
andDshown in Fig. 33.1(b). The gradient of the curve