342 Higher Engineering Mathematics
Problem 13. Determine
d
dx[
cosh−^1√
(x^2 + 1 )]Ify=cosh−^1 f(x),dy
dx=f′(x)
√
[f(x)]^2 − 1Ify=cosh−^1√
(x^2 + 1 ),thenf(x)=√
(x^2 + 1 )and
f′(x)=1
2(x+ 1 )−^1 /^2 ( 2 x)=x
√
(x^2 + 1 )Hence,d
dx[
cosh−^1√
(x^2 + 1 )]=x
√
(x^2 + 1 )
√[
(√
(x^2 + 1 )) 2
− 1]=x
√
(x^2 + 1 )
√
(x^2 + 1 − 1 )=x
√
(x^2 + 1 )
x=1
√
(x^2 +1)Problem 14. Show thatd
dx[
tanh−^1x
a]
=
a
a^2 −x^2and hence determine the differentialcoefficient of tanh−^14 x
3Ify=tanh−^1x
athenx
a=tanhyandx=atanhydx
dy=asech^2 y=a( 1 −tanh^2 y),since
1 −sech^2 y=tanh^2 y=a[
1 −(x
a) 2 ]
=a(
a^2 −x^2
a^2)
=a^2 −x^2
aHencedy
dx=1
dx
dy=a
a^2 −x^2Comparing tanh−^1
4 x
3with tanh−^1
x
ashows thata=
3
4Henced
dx[
tanh−^14 x
3]
=3(^4
3
4) 2
−x^2=3
4
9
16−x^2=3
4
9 − 16 x^2
16=3
4·16
( 9 − 16 x^2 )=12
9 − 16 x^2Problem 15. Differentiate cosech−^1 (sinhθ).From Table 33.2(v),d
dx[cosech−^1 f(x)]=−f′(x)
f(x)√
[f(x)]^2 + 1Henced
dθ[cosech−^1 (sinhθ)]=−coshθ
sinhθ√
[sinh^2 θ+1]=−coshθ
sinhθ√
cosh^2 θsincecosh^2 θ−sinh^2 θ= 1=−coshθ
sinhθcoshθ=− 1
sinhθ=−cosechθProblem 16. Find the differential coefficient of
y=sech−^1 ( 2 x− 1 ).From Table 33.2(iv),d
dx[sech−^1 f(x)]=−f′(x)
f(x)√
1 −[f(x)]^2Hence,d
dx[sech−^1 ( 2 x− 1 )]=− 2
( 2 x− 1 )√
[1−( 2 x− 1 )^2 ]=− 2
( 2 x− 1 )√
[1−( 4 x^2 − 4 x+ 1 )]=− 2
( 2 x− 1 )√
( 4 x− 4 x^2 )=− 2
( 2 x− 1 )√
[4x( 1 −x)]=
− 2
( 2 x− 1 ) 2√
[x( 1 −x)]=
− 1
( 2 x− 1 )√
[x(1−x)]Problem 17. Show that
d
dx[coth−^1 (sinx)]=secx.From Table 33.2(vi),d
dx[coth−^1 f(x)]=f′(x)
1 −[f(x)]^2