344 Higher Engineering Mathematics
- (a) cosech−^1
x
4(b)1
2cosech−^14 x
[
(a)− 4
x√
(x^2 + 16 )(b)− 1
2 x√
( 16 x^2 + 1 )]- (a) coth−^1
2 x
7(b)1
4coth−^13 t
[
(a)14
49 − 4 x^2(b)3
4 ( 1 − 9 t^2 )]- (a) 2 sinh−^1
√
(x^2 − 1 )(b)1
2cosh−^1√
(x^2 + 1 )
[
(a)2
√
(x^2 − 1 )(b)1
2√
(x^2 + 1 )]- (a) sech−^1 (x− 1 )(b) tanh−^1 (tanhx)
[
(a)
− 1
(x− 1 )√
[x( 2 −x)](b) 1]- (a) cosh−^1
(
t
t− 1)
(b) coth−^1 (cosx)
[
(a)
− 1
(t− 1 )√
( 2 t− 1 )(b)−cosecx]- (a)θsinh−^1 θ(b)
√
xcosh−^1 x
⎡
⎢
⎢
⎢
⎣(a)
θ
√
(θ^2 + 1 )+sinh−^1 θ(b)√
x
√
(x^2 − 1 )+cosh−^1 x
2√
x⎤
⎥
⎥
⎥
⎦- (a)
2sech−^1√
t
t^2(b)tanh−^1 x
( 1 −x^2 )
⎡
⎢
⎢
⎢
⎣(a)− 1
t^3{
1
√
( 1 −t)+4sech−^1√
t}(b)1 + 2 xtanh−^1 x
( 1 −x^2 )^2⎤
⎥
⎥
⎥
⎦- Show that
d
dx[xcosh−^1 (coshx)]= 2 x.In Problems 13 to 15, determine the given
integrals.- (a)
∫
1
√
(x^2 + 9 )dx(b)∫
3
√
( 4 x^2 + 25 )dx
[
(a) sinh−^1x
3+c(b)3
2sinh−^12 x
5+c]- (a)
∫
1
√
(x^2 − 16 )dx(b)∫
1
√
(t^2 − 5 )dt
[
(a) cosh−^1x
4+c(b) cosh−^1t
√
5+c]- (a)
∫
dθ
√
( 36 +θ^2 )(b)∫
3
( 16 − 2 x^2 )dx⎡
⎢
⎢
⎣(a)1
6tan−^1θ
6+c(b)3
2√
8tanh−^1x
√
8+c⎤
⎥
⎥
⎦