Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Integration using trigonometric and hyperbolic substitutions 401


∫ π
4
0


4cos^4 θdθ= 4

∫ π
4
0

(cos^2 θ)^2 dθ

= 4

∫ π
4
0

[
1
2

( 1 +cos 2θ)

] 2

=

∫ π
4
0

( 1 +2cos2θ+cos^22 θ)dθ

=

∫ π
4
0

[
1 +2cos2θ+

1
2

( 1 +cos 4θ)

]

=

∫ π
4
0

(
3
2

+2cos2θ+

1
2

cos 4θ

)

=

[
3 θ
2

+sin2θ+

sin4θ
8


4
0

=

[
3
2


4

)
+sin

2 π
4

+

sin4(π/ 4 )
8

]
−[0]

=

3 π
8

+ 1 = 2. 178 ,
correct to 4 significant figures.

Problem 8. Find


sin^2 tcos^4 tdt.


sin^2 tcos^4 tdt=


sin^2 t(cos^2 t)^2 dt

=

∫ (
1 −cos 2t
2

)(
1 +cos2t
2

) 2
dt

=

1
8


( 1 −cos2t)( 1 +2cos2t+cos^22 t)dt

=

1
8


( 1 +2cos2t+cos^22 t−cos 2t
−2cos^22 t−cos^32 t)dt
=

1
8


( 1 +cos2t−cos^22 t−cos^32 t)dt

=

1
8

∫[
1 +cos 2t−

(
1 +cos 4t
2

)

−cos 2t( 1 −sin^22 t)

]
dt

=

1
8

∫(
1
2


cos 4t
2

+cos 2tsin^22 t

)
dt

=

1
8

(
t
2


sin4t
8

+

sin^32 t
6

)
+c

Now try the following exercise

Exercise 156 Further problemson
integration of powersof sines and cosines
In Problems 1 to 6, integrate with respect to the
variable.


  1. sin^3 θ


[
(a)−cosθ+

cos^3 θ
3

+c

]


  1. 2cos^32 x


[
sin2x−

sin^32 x
3

+c

]


  1. 2sin^3 tcos^2 t [
    − 2
    3


cos^3 t+

2
5

cos^5 t+c

]


  1. sin^3 xcos^4 x


[
−cos^5 x
5

+

cos^7 x
7

+c

]


  1. 2sin^42 θ [
    3 θ
    4


1
4
sin4θ+

1
32
sin8θ+c

]


  1. sin^2 tcos^2 t


[
t
8


1
32

sin4t+c

]

40.4 Worked problems on integration


of products of sines and cosines


Problem 9. Determine


sin3tcos2tdt.

sin3tcos 2tdt

=


1
2

[sin( 3 t+ 2 t)+sin( 3 t− 2 t)]dt,

from 6 of Table 40.1, which follows from Section 17.4,
page 170,

=

1
2


(sin5t+sint)dt

=

1
2

(
−cos 5t
5

−cost

)
+c

Problem 10. Find


1
3
cos 5xsin2xdx.
Free download pdf