402 Higher Engineering Mathematics
∫
1
3cos5xsin2xdx=1
3∫
1
2[sin( 5 x+ 2 x)−sin( 5 x− 2 x)]dx,
from 7 of Table 40.1=1
6∫
(sin7x−sin3x)dx=1
6(
−cos 7x
7+cos 3x
3)
+cProblem 11. Evaluate∫ 102cos6θcosθdθ,
correct to 4 decimal places.∫ 102cos6θcosθdθ= 2∫ 101
2[cos( 6 θ+θ)+cos( 6 θ−θ)]dθ,
from 8 of Table 40.1=∫ 10(cos 7θ+cos 5θ)dθ=[
sin7θ
7+sin5θ
5] 10=(
sin7
7+sin5
5)
−(
sin0
7+sin0
5)‘sin7’ means ‘the sine of 7radians’ (≡ 401 ◦ 4 ′)and
sin 5≡ 286 ◦ 29 ′.Hence∫ 102cos6θcosθdθ=( 0. 09386 +(− 0. 19178 ))−( 0 )
=− 0. 0979 ,correct to 4 decimal places.Problem 12. Find 3∫
sin5xsin3xdx.3∫
sin5xsin3xdx= 3∫
−1
2[cos( 5 x+ 3 x)−cos( 5 x− 3 x)]dx,
from 9 of Table 40.1=−3
2∫
(cos 8x−cos 2x)dx=−3
2(
sin 8
8−sin 2x
2)
+c or3
16(4sin2x−sin 8x)+cNow try the following exerciseExercise 157 Further problems on
integration of products of sines and cosines
In Problems 1 to 4, integrate with respect to the
variable.- sin5tcos 2t
[
−1
2(
cos 7t
7+cos 3t
3)
+c]- 2sin3xsinx
[
sin2x
2−sin4x
4+c]- 3cos6xcosx [
3
2
(
sin7x
7+sin5x
5)
+c]4.1
2cos 4θsin2θ
[
1
4(
cos2θ
2−cos 6θ
6)
+c]In Problems 5 to 8, evaluate the definite integrals.5.∫ π
2
0cos 4xcos 3xdx[
(a)3
7or 0. 4286]6.∫ 102sin7tcos 3tdt [0.5973]- − 4
∫ π
3
0sin5θsin2θdθ [0.2474]8.∫ 213cos8tsin3tdt [−0.1999]40.5 Worked problems on integration
using thesinθsubstitution
Problem 13. Determine∫
1
√
(a^2 −x^2 )dx.Letx=asinθ,thendx
dθ=acosθand dx=acosθdθ.Hence∫
1
√
(a^2 −x^2 )dx=∫
1
√
(a^2 −a^2 sin^2 θ)acosθdθ=∫
acosθdθ
√
[a^2 ( 1 −sin^2 θ)]