Integration using trigonometric and hyperbolic substitutions 407
∫
2 x− 3
√
(x^2 − 9 )
dx=∫
2 x
√
(x^2 − 9 )dx−∫
3
√
(x^2 − 9 )dxThe first integral is determined using the algebraic sub-
stitutionu=(x^2 − 9 ), and the second integral is of the
form
∫
1
√
(x^2 −a^2 )dx(see Problem 24)Hence
∫
2 x
√
(x^2 − 9 )dx−∫
3
√
(x^2 − 9 )dx= 2√
(x^2 −9)−3cosh−^1x
3+cProblem 26.∫ √
(x^2 −a^2 )dx.Letx=acoshθthen
dx
dθ=asinhθanddx=asinhθdθ
Hence∫ √
(x^2 −a^2 )dx=∫ √
(a^2 cosh^2 θ−a^2 )(asinhθdθ)=∫ √
[a^2 (cosh^2 θ− 1 )](asinhθdθ)=∫ √
(a^2 sinh^2 θ)(asinhθdθ)=a^2∫
sinh^2 θdθ=a^2∫(
cosh 2θ− 1
2)
dθsince cosh2θ= 1 +2sinh^2 θ
from Table 5.1, page 45,=a^2
2[
sinh2θ
2−θ]
+c=a^2
2[sinhθcoshθ−θ]+c,since sinh2θ=2sinhθcoshθSincex=acoshθthen coshθ=
x
aandθ=cosh−^1
x
aAlso, since cosh^2 θ−sinh^2 θ=1, then
sinhθ=√
(cosh^2 θ− 1 )=√[
(x
a) 2
− 1]
=√
(x^2 −a^2 )
aHence∫ √
(x^2 −a^2 )dx=a^2
2[√
(x^2 −a^2 )
a(x
a)
−cosh−^1x
a]
+c=
x
2√
(x^2 −a^2 )−
a^2
2cosh−^1
x
a+cProblem 27. Evaluate∫ 32√
(x^2 − 4 )dx.∫ 32√
(x^2 − 4 )dx=[
x
2√
(x^2 − 4 )−4
2cosh−^1x
2] 32
from Problem 26, whena=2,=(
3
5√
5 −2cosh−^13
2)−( 0 −2cosh−^11 )Since cosh−^1x
a=ln{
x+√
(x^2 −a^2 )
a}
thencosh−^13
2=ln{
3 +√
( 32 − 22 )
2}=ln2. 6180 = 0. 9624Similarly, cosh−^11 = 0Hence∫ 32√
(x^2 − 4 )dx=[
3
2√
5 − 2 ( 0. 9624 )]
−[0]= 1. 429 , correct to 4 significant figures.Now try the following exerciseExercise 161 Further problemson
integration using thecoshθsubstitution- Find
∫
1
√
(t^2 − 16 )dt.[
cosh−^1x
4+c]