410 Higher Engineering Mathematics
By dividing out (since the numerator and denomina-
tor are of the same degree) and resolving into partial
fractions it was shown in Problem 3, page 14:x^2 + 1
x^2 − 3 x+ 2≡ 1 −2
(x− 1 )+5
(x− 2 )Hence∫
x^2 + 1
x^2 − 3 x+ 2dx≡∫{
1 −2
(x− 1 )+5
(x− 2 )}
dx=(x−2) ln(x−1)+5ln(x−2)+corx+ln{
(x−2)^5
(x−1)^2}
+cProblem 4. Evaluate
∫ 32x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2dx,correct to 4 significant figures.By dividing out and resolving into partial fractions it
was shown in Problem 4, page 15:x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2≡x− 3 +4
(x+ 2 )−3
(x− 1 )Hence∫ 32x^3 − 2 x^2 − 4 x− 4
x^2 +x− 2dx≡∫ 32{
x− 3 +4
(x+ 2 )−3
(x− 1 )}
dx=[
x^2
2− 3 x+4ln(x+ 2 )−3ln(x− 1 )] 32=(
9
2− 9 +4ln5−3ln2)−( 2 − 6 +4ln4−3ln1)=− 1. 687 ,correct to 4 significant figures.Now try the following exerciseExercise 162 Further problems on
integration using partial fractions with
linear factors
In Problems 1 to 5, integrate with respect tox.1.∫
12
(x^2 − 9 )dx
⎡
⎢
⎣2ln(x− 3 )−2ln(x+ 3 )+cor ln{
x− 3
x+ 3} 2
+c⎤
⎥
⎦2.∫
4 (x− 4 )
(x^2 − 2 x− 3 )dx
⎡
⎢
⎢
⎣5ln(x+ 1 )−ln(x− 3 )+cor ln{
(x+ 1 )^5
(x− 3 )}
+c⎤
⎥
⎥
⎦3.∫
3 ( 2 x^2 − 8 x− 1 )
(x+ 4 )(x+ 1 )( 2 x− 1 )dx
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
7ln(x+ 4 )−3ln(x+ 1 )
−ln( 2 x− 1 )+c orln{
(x+ 4 )^7
(x+ 1 )^3 ( 2 x− 1 )}
+c⎤ ⎥ ⎥ ⎥ ⎥ ⎦4.∫
x^2 + 9 x+ 8
x^2 +x− 6dx
[
x+2ln(x+ 3 )+6ln(x− 2 )+c
orx+ln{(x+ 3 )^2 (x− 2 )^6 }+c]5.∫
3 x^3 − 2 x^2 − 16 x+ 20
(x− 2 )(x+ 2 )dx⎡
⎣3 x^2
2− 2 x+ln(x− 2 )−5ln(x+ 2 )+c⎤
⎦In Problems 6 and 7, evaluate the definite integrals
correct to 4 significant figures.6.∫ 43x^2 − 3 x+ 6
x(x− 2 )(x− 1 )dx [0.6275]