Thet=tanθ 2 substitution 417
=∫
2dt
1 +t^2
7 ( 1 +t^2 )− 3 ( 2 t)+ 6 ( 1 −t^2 )
1 +t^2=∫
2dt
7 + 7 t^2 − 6 t+ 6 − 6 t^2=∫
2dt
t^2 − 6 t+ 13=∫
2dt
(t− 3 )^2 + 22= 2[
1
2tan−^1(
t− 3
2)]
+cfrom 12, Table 40.1, page 399. Hence
∫
dx
7 −3sinx+6cosx=tan−^1⎛
⎜
⎝tanx
2− 3
2⎞
⎟
⎠+cProblem 7. Determine∫
dθ
4cosθ+3sinθFrom equations (1) to (3),
∫
dθ
4cosθ+3sinθ=∫ 2dt
1 +t^24(
1 −t^2
1 +t^2)
+ 3(
2 t
1 +t^2)=∫
2dt
4 − 4 t^2 + 6 t=∫
dt
2 + 3 t− 2 t^2=−1
2∫
dtt^2 −3
2t− 1=−1
2∫
dt
(
t−3
4) 2
−25
16=1
2∫
dt
(
5
4) 2
−(
t−3
4) 2=1
2⎡
⎢
⎢
⎣12(
5
4)ln⎧
⎪⎪
⎨
⎪⎪
⎩5
4+(
t−3
4)5
4−(
t−3
4)⎫
⎪⎪
⎬
⎪⎪
⎭⎤
⎥
⎥
⎦+cfrom Problem 11, Chapter 41, page 413=1
5ln⎧
⎪⎨⎪⎩1
2+t
2 −t⎫
⎪⎬⎪⎭
+cHence∫
dθ
4cosθ+3sinθ=1
5ln⎧
⎪⎨⎪⎩1
2+tanθ
2
2 −tanθ
2⎫
⎪⎬⎪⎭
+cor1
5ln⎧
⎪⎨⎪⎩1 +2tanθ
2
4 −2tanθ
2⎫
⎪⎬⎪⎭+cNow try the following exerciseExercise 166 Further problems on the
t=tanθ
2substitutionIn Problems 1 to 4, integrate with respect to the
variable.1.∫
dθ
5 +4sinθ
⎡
⎢
⎣2
3tan−^1⎛
⎜
⎝5tanθ
2+ 4
3⎞
⎟
⎠+c⎤
⎥
⎦2.∫
dx
1 +2sinx
⎡
⎢
⎣1
√
3ln⎧
⎪⎨⎪⎩tanx
2+ 2 −√
3tanx
2+ 2 +√
3⎫
⎪⎬⎪⎭+c⎤
⎥
⎦3.∫
dp
3 −4sinp+2cosp
⎡
⎢
⎣1
√
11ln⎧
⎪⎨⎪⎩tanp
2− 4 −√
11tanp
2− 4 +√
11⎫
⎪⎬⎪⎭
+c⎤
⎥
⎦