416 Higher Engineering Mathematics
If t=tanθ
2then cosθ=1 −t^2
1 +t^2and dx=2dt
1 +t^2
from equations (2) and (3).Thus∫
dθ
5 +4cosθ=∫(
2dt
1 +t^2)5 + 4(
1 −t^2
1 +t^2)=∫(
2dt
1 +t^2)5 ( 1 +t^2 )+ 4 ( 1 −t^2 )
( 1 +t^2 )= 2∫
dt
t^2 + 9= 2∫
dt
t^2 + 32= 2(
1
3tan−^1t
3)
+c,from 12 of Table 40.1, page 399. Hence
∫
dθ
5 +4cosθ=2
3tan−^1(
1
3tanθ
2)
+cNow try the following exerciseExercise 165 Further problems on the
t=tanθ
2substitutionIntegratethefollowingwithrespect to thevariable:1.∫
dθ
1 +sinθ⎡
⎢
⎣− 21 +tanθ
2+c⎤
⎥
⎦2.∫
dx
1 −cosx+sinx
⎡
⎢
⎣ln⎧
⎪⎨⎪⎩tanx
2
1 +tanx
2⎫
⎪⎬⎪⎭+c⎤
⎥
⎦3.∫
dα
3 +2cosα
[
2
√
5tan−^1(
1
√
5tanα
2)
+c]4.∫
dx
3sinx−4cosx
⎡
⎢
⎣1
5ln⎧
⎪⎨⎪⎩2tan
x
2− 1tanx
2+ 2⎫
⎪⎬⎪⎭
+c⎤
⎥
⎦42.3 Further worked problems on the
t=tan
θ
2
substitution
Problem 5. Determine∫
dx
sinx+cosxIf tanx
2then sinx=2 t
1 +t^2,cosx=1 −t^2
1 +t^2anddx=2dt
1 +t^2from equations (1), (2) and (3).Thus
∫
dx
sinx+cosx=∫
2dt
1 +t^2
(
2 t
1 +t^2)
+(
1 −t^2
1 +t^2)=∫
2dt
1 +t^2
2 t+ 1 −t^2
1 +t^2=∫
2dt
1 + 2 t−t^2=∫
−2dt
t^2 − 2 t− 1=∫
−2dt
(t− 1 )^2 − 2=∫
2dt
(√
2 )^2 −(t− 1 )^2= 2[
1
2√
2ln{√
2 +(t− 1 )
√
2 −(t− 1 )}]
+c(see Problem 11, Chapter 41, page 413),i.e.∫
dx
sinx+cosx=1
√
2ln⎧
⎪⎨⎪⎩√
2 − 1 +tanx
2
√
2 + 1 −tanx
2⎫
⎪⎬⎪⎭+cProblem 6.∫ Determine
dx
7 −3sinx+6cosxFrom equations (1) and (3),
∫
dx
7 −3sinx+6cosx=∫ 2dt
1 +t^27 − 3(
2 t
1 +t^2)
+ 6(
1 −t^2
1 +t^2)