Integration by parts 421
Problem 2. Find∫
3 te^2 tdt.Letu= 3 t, from which,du
dt=3, i.e. du=3dtandlet dv=e^2 tdt, from which,v=∫
e^2 tdt=1
2e^2 t
Substituting into∫
udv=uv−∫
vdugives:
∫
3 te^2 tdt=( 3 t)(
1
2e^2 t)
−∫ (
1
2e^2 t)
(3dt)=3
2te^2 t−3
2∫
e^2 tdt=3
2te^2 t−3
2(
e^2 t
2)
+cHence
∫
3 te^2 tdt=^32 e^2 t(
t−^12)
+c,which may be checked by differentiating.Problem 3. Evaluate∫ π
2
02 θsinθdθ.Letu= 2 θ, from which,du
dθ=2, i.e. du=2dθand let
dv=sinθdθ, from which,v=∫
sinθdθ=−cosθSubstituting into∫
udv=uv−∫
vdugives:
∫
2 θsinθdθ=( 2 θ)(−cosθ)−∫
(−cosθ)(2dθ)=− 2 θcosθ+ 2∫
cosθdθ=− 2 θcosθ+2sinθ+cHence∫ π
2
02 θsinθdθ=[− 2 θcosθ+2sinθ]π
2
0=[
− 2(π
2)
cosπ
2+2sinπ
2]
−[0+2sin0]=(− 0 + 2 )−( 0 + 0 )= 2sincecosπ
2=0andsinπ
2= 1Problem 4. Evaluate∫ 105 xe^4 xdx, correct to
3 significant figures.Letu= 5 x, from whichdu
dx=5, i.e. du=5dxandlet dv=e^4 xdx, from which,v=∫
e^4 xdx=^14 e^4 x.
Substituting into∫
udv=uv−∫
vdugives:
∫
5 xe^4 xdx=( 5 x)(
e^4 x
4)
−∫ (
e^4 x
4)
(5dx)=5
4xe^4 x−5
4∫
e^4 xdx=5
4xe^4 x−5
4(
e^4 x
4)
+c=5
4e^4 x(
x−1
4)
+cHence∫ 105 xe^4 xdx=[
5
4
e^4 x(
x−1
4)] 10=[
5
4e^4(
1 −1
4)]
−[
5
4e^0(
0 −1
4)]=(
15
16e^4)
−(
−5
16)= 51. 186 + 0. 313 = 51. 499 =51.5,
correct to 3 significant figuresProblem 5. Determine∫
x^2 sinxdx.Letu=x^2 , from which,du
dx= 2 x,i.e.du= 2 xdx,and
let dv=sinxdx, from which,v=∫
sinxdx=−cosxSubstituting into∫
udv=uv−∫
vdugives:
∫
x^2 sinxdx=(x^2 )(−cosx)−∫
(−cosx)( 2 xdx)=−x^2 cosx+ 2[∫
xcosxdx]