422 Higher Engineering Mathematics
The integral,∫
xcosxdx, is not a ‘standard integral’
and it can only be determined by using the integration
by parts formula again.
From Problem 1,∫
xcosxdx=xsinx+cosxHence∫
x^2 sinxdx=−x^2 cosx+ 2 {xsinx+cosx}+c=−x^2 cosx+ 2 xsinx+2cosx+c=(2−x^2 )cosx+ 2 xsinx+cIn general, if the algebraic term of a product is of power
n, then the integration by parts formula is appliedn
times.Now try the following exerciseExercise 167 Further problems on
integration by partsDetermine the integrals in Problems 1 to 5 using
integration by parts.1.∫
xe^2 xdx[[
e^2 x
2(
x−1
2)]
+c]2.∫
4 x
e^3 xdx[
−4
3e−^3 x(
x+1
3)
+c]3.∫
xsinxdx [−xcosx+sinx+c]4.∫
5 θcos2θdθ
[
5
2(
θsin2θ+^12 cos2θ)
+c]5.∫
3 t^2 e^2 tdt[
3
2 e2 t(
t^2 −t+^12)
+c]Evaluate the integrals in Problems 6 to 9, correct
to 4 significant figures.6.∫ 202 xexdx [16.78]7.∫ π
4
0xsin2xdx [0.2500]8.∫ π
2
0t^2 costdt [0.4674]9.∫ 213 x^2 ex(^2) dx [15.78]
43.3 Further worked problems on
integration by parts
Problem 6. Find∫
xlnxdx.The logarithmic function is chosen as the ‘upart’.Thus whenu=lnx,thendu
dx=1
x,i.e.du=dx
xLetting dv=xdxgivesv=∫
xdx=
x^2
2
Substituting into∫
udv=uv−∫
vdugives:
∫
xlnxdx=(lnx)(
x^2
2)
−∫ (
x^2
2)
dx
x=x^2
2lnx−1
2∫
xdx=x^2
2lnx−1
2(
x^2
2)
+cHence∫
xlnxdx=x^2
2(
lnx−1
2)
+corx^2
4(2lnx−1)+cProblem 7. Determine∫
lnxdx.∫
lnxdxis the same as∫
( 1 )lnxdxLetu=lnx, from which,du
dx=1
x,i.e.du=dx
x
and let dv=1dx, from which,v=∫
1dx=x
Substituting into∫
udv=uv−∫
vdugives:
∫
lnxdx=(lnx)(x)−∫
xdx
x=xlnx−∫
dx=xlnx−x+cHence∫
lnxdx=x(lnx−1)+c