Reduction formulae 431
=4[(− 0. 054178 − 0. 1020196− 0. 2881612 )−(− 0. 533333 )]= 4 ( 0. 0889745 )= 0. 356Problem 10. Determine a reduction formula for
∫ π
2
0sinnxdxand hence evaluate∫π
2
0sin^6 xdxFrom equation (4),
∫
sinnxdx
=In=−1
nsinn−^1 xcosx+n− 1
nIn− 2hence
∫ π
2
0
sinnxdx=[
−1
nsinn−^1 xcosx]π 20+n− 1
nIn− 2=[0−0]+
n− 1
nIn− 2i.e. In=
n− 1
nIn− 2Hence
∫ π
2
0
sin^6 xdx=I 6 =5
6I 4I 4 =3
4I 2 , I 2 =1
2I 0and I 0 =
∫ π
2
0sin^0 xdx=∫ π
2
01dx=π
2Thus
∫ π
2
0sin^6 xdx=I 6 =5
6I 4 =5
6[
3
4I 2]=5
6[
3
4{
1
2I 0}]=5
6[
3
4{
1
2[π2]}]
=15
96π(b)
∫
cosnxdxLetIn=∫
cosnxdx≡∫
cosn−^1 xcosxdxfrom laws
of indices.
Using integration by parts, let u=cosn−^1 x from
which,
du
dx=(n− 1 )cosn−^2 x(−sinx)and du=(n− 1 )cosn−^2 x(−sinx)dxand let dv=cosxdxfrom which,v=∫
cosxdx=sinx
ThenIn=(cosn−^1 x)(sinx)−∫
(sinx)(n− 1 )cosn−^2 x(−sinx)dx=(cosn−^1 x)(sinx)+(n− 1 )∫
sin^2 xcosn−^2 xdx=(cosn−^1 x)(sinx)+(n− 1 )∫
( 1 −cos^2 x)cosn−^2 xdx=(cosn−^1 x)(sinx)+(n− 1 ){∫
cosn−^2 xdx−∫
cosnxdx}i.e.In=(cosn−^1 x)(sinx)+(n− 1 )In− 2 −(n− 1 )Ini.e.In+(n− 1 )In=(cosn−^1 x)(sinx)+(n− 1 )In− 2i.e.nIn=(cosn−^1 x)(sinx)+(n− 1 )In− 2Thus In=1
ncosn−^1 xsinx+n−n^1 In− 2 (5)Problem 11. Use a reduction formula to
determine∫
cos^4 xdx.Using equation (5),
∫
cos^4 xdx=I 4 =1
4cos^3 xsinx+3
4I 2and I 2 =1
2cosxsinx+1
2I 0and I 0 =∫
cos^0 xdx=∫
1dx=x