434 Higher Engineering Mathematics
=x(lnx)n−n∫
(lnx)n−^1 dxi.e.In=x(lnx)n−nIn− 1Whenn=3,
∫
(lnx)^3 dx=I 3 =x(lnx)^3 − 3 I 2I 2 =x(lnx)^2 − 2 I 1 andI 1 =∫
lnxdx=x(lnx− 1 )from
Problem 7, page 422.
Hence
∫
(lnx)^3 dx=x(lnx)^3 −3[x(lnx)^2 − 2 I 1 ]+c=x(lnx)^3 −3[x(lnx)^2
−2[x(lnx− 1 )]]+c
=x(lnx)^3 −3[x(lnx)^2
− 2 xlnx+ 2 x]+c
=x(lnx)^3 − 3 x(lnx)^2
+ 6 xlnx− 6 x+c
=x[(lnx)^3 −3(lnx)^2
+6lnx−6]+cNow try the following exerciseExercise 172 Further problems on
reduction formulae- Evaluate
∫ π 20cos^2 xsin^5 xdx.[
8
105]- Determine
∫
tan^6 xdxby usingreduction for-mulae and hence evaluate∫ π
4
0tan^6 xdx.
[
13
15−π
4]- Evaluate
∫ π 20cos^5 xsin^4 xdx.[
8
315]- Use a reduction formula to determine∫
(lnx)^4 dx.
[
x(lnx)^4 − 4 x(lnx)^3 + 12 x(lnx)^2
− 24 xlnx+ 24 x+c
]- Show that
∫ π
2
0sin^3 θcos^4 θdθ=2
35