Reduction formulae 433
=∫
tann−^2 xsec^2 xdx−In− 2i.e.In=tann−^1 x
n− 1−In− 2Whenn=7,
I 7 =∫
tan^7 xdx=tan^6 x
6−I 5I 5 =tan^4 x
4−I 3 and I 3 =tan^2 x
2−I 1I 1 =∫
tanxdx=ln(secx)from Problem 9, Chapter 39, page 394Thus
∫
tan^7 xdx=tan^6 x
6−[
tan^4 x
4−(
tan^2 x
2−ln(secx))]Hence
∫
tan^7 xdx=1
6tan^6 x−1
4tan^4 x+1
2tan^2 x−ln(secx)+cProblem 14. Evaluate, using a reduction formula,
∫ π
2
0sin^2 tcos^6 tdt.∫ π
2
0sin^2 tcos^6 tdt=∫ π
2
0( 1 −cos^2 t)cos^6 tdt=∫ π
2
0cos^6 tdt−∫ π
2
0cos^8 tdtIf In=
∫ π
2
0cosntdtthen
∫ π 2
0sin^2 tcos^6 tdt=I 6 −I 8and from equation (6),I 6 =5
6I 4 =5
6[
3
4I 2]=5
6[
3
4(
1
2I 0)]and I 0 =∫ π 20cos^0 tdt=∫ π 201dt=[x]π
2
0 =π
2Hence I 6 =5
6·3
4·1
2·π
2=15 π
96or5 π
32Similarly,I 8 =7
8I 6 =7
8·5 π
32
Thus
∫ π
2
0sin^2 tcos^6 tdt=I 6 −I 8=5 π
32−7
8·5 π
32=1
8·5 π
32=5 π
256Problem 15. Use integration by parts to
determine a reduction formula for∫
(lnx)ndx.
Hence determine∫
(lnx)^3 dx.LetIn=∫
(lnx)ndx.
Using integration by parts, letu=(lnx)n, from which,du
dx=n(lnx)n−^1(
1
x)and du=n(lnx)n−^1(
1
x)
dxand let dv=dx, from which,v=∫
dx=xThen In=∫
(lnx)ndx=(lnx)n(x)−∫
(x)n(lnx)n−^1(
1
x)
dx